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Nonexistence of the periodic table for antimatter

Daniel L. Miller1
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Assume the exchange of indistinguishable half-integer spin particles and the CPT transformation
(4-inversion) do not commute. This explains the matter-antimatter (baryon) asymmetry of the
universe (BAU), because antimatter would be unstable. Extension of the periodic table to the
antimatter sector will not be possible for the same reason.

PACS numbers: 31.10.+z, 11.30.Er, 11.30.Pb, 95.30.-k, 71.10.-w

I. INTRODUCTION TO STABILITY OF
MATTER

The periodic table of elements is the most fundamental
evidence for the quantum mechanics and for the exclusion
principle. There is no way to explain the periodic filling
of atomic orbitals without the exclusion principle. The
Coulomb repulsion is not enough for holding the stability
of matter[1, 2].

There are quite a few theoretical quests and experi-
mental efforts to fill the periodic table for antimatter,
however today it does not go beyond the antihydrogen
atom.[3, 4] Partial explanation is related of course to ex-
perimental difficulties to produce enough density of the
antihelium nucleus in order to form antihelium atoms.
[5–7] What if the exclusion principle does not hold for
antimatter?

In such a theory the CPT invariance (which says that
matter is identical to antimatter) will work for single
particle and for any number of distinguishable particles.
For example a hydrogen atom and an antihydrogen atom
should be identical in all observed properties[8]. However
the CPT invariance will not work for a set of two or more
indistinguishable particles. An antihydrogen molecule
and an antihelium atom would be very different from
their matter counterparts.

In this theory there is antihydrogen, but there is no
periodic table for antielements. Few light antiatoms will
have bound state with positron condensate in lowest S-
wave state. Heavy antiatoms will be unstable and will
not be able to form solid antimatter. Antimatter will
not be able to form any cosmological object balanced
against gravitational collapse by degeneracy pressure.

Relatively small amount of observed antimmatter in
cosmic rays can be evidence for the certain scenario of
the baryogenesis[9, 10], the CPT invariance violation[11],
models where antimatter cannot be observed because it
is stored in black holes. The lack of exclusion principle
for antimatter is the alternative solution to the paradox
of matter antimatter asymmetry. It does not require any
of Sakharov’s conditions.[12]

It therefore highly important to collect experimental
data on antimatter statistics. For example, the interac-
tion of antiparticles was recently observed in the beam

of antiprotons from collisions of heavy elements.[13, 14]
The correlation of antiprotons was found similar to that
of protons indicating same statistics for antiprotons and
protons. However it is also similar to correlation of
S=1 deuterons because Coulomb interaction clouds the
exchange.[15]

The statistics of positrons can be directly probed by
positron-positron Moller scattering. None was able to
measure it so far because of low luminosity of positron
beams from beta-decay sources.[4] Zeeman effect in
the dipositronium molecule[16] also depends on sign of
positron-positron exchange, but the experimental diffi-
culty comes from the short life time of dipositronium in
magnetic field.[4]

We see lack of experimental evidences proving anti-
commutation of positrons, and will discuss the antiworld
made from commuting positrons. The ground state en-
ergy of Z positive and Z negative commuting charged
particles is estimated[17, 18] as E ∼ −Z7/5. It satisfies
the stability condition of the first kind E > −∞, mean-
ing that these particles can form a bound state. However
it fails to satisfy the stability condition of the second kind
E > −CZ, where C > 0 is some constant. The stability
condition of the second is necessarily (not sufficient) for
existence of the thermodynamic limit.[2]

The positronic structure of antiatom is yet another
example of the ground state calculation with commut-
ing charges. The calculation is done in Sec. VI for
antinuclear of charge −|e|Z surrounded by Z positrons
in S-state. The model predicts ρAA(Z) ∼ Z4 while
ρTF (Z) ∼ Z2 where ρAA(Z) is density of positrons near
the origin of an antiatom and ρTF (Z) is the density of
electrons in Thomas-Fermi model of an atom.

The stability of atoms is limited (i) by nuclear de-
cay, (ii) by stability of vacuum in presence of high elec-
tric field, (iii) by interaction between nuclear and shell
(e.g. electron capture) and (iv) by termination of elec-
tron spectrum at critical charge.[19–21] Scenarios (i), (ii),
(iv) depend weakly on statistics of charges in the atomic
shell, and should give approximately same maximal Zmax

of antiatoms, as of atoms. In the case (iii) an antiatom
should be stable up to critical density of positrons equal
to density of electrons in a largest stable atom. Stable
atoms are observed up to Z ∼ 100 and therefore stable
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antiatoms should exist up to Zmax ∼ 10.
The plan of the paper is as follows. Calculation of

ground state of an antiatom in Sec. VI is preceded by
consistency check for the assumption that matter and an-
timatter belong to opposite symmetry classes relatively
to particle permutations. We prove in Sec. II that energy
of the system is positively defined for any number of par-
ticles and antiparticles, and remains positively defined
under the CPT transformation. Charge and Green func-
tion are proven to be odd relatively to the CPT transfor-
mation. We prove CPT invariance of ordered products
of quantum operators in Sec. III.

Interaction of indistinguishable particles is not CPT
invariant in present theory; in other words positron is the
CPT image of electron, but interaction of two positrons
is not the CPT image of interaction of two electrons.
The analysis in Sec. IV proves that Wick theorem is not
CPT invariant. Straightforwardly interaction diagrams
are not CPT invariant too. We summarize all theoretical
postulates in Sec. V, and the entire paper in Sec. VII.

II. CPT INVARIANCE OF ENERGY, CHARGE
AND GREEN FUNCTION.

Let’s review the quantum theory where the CPT trans-
formation (4-inversion, denoted as Î4) converts half inte-
ger spin particles to antiparticles and vice versa

Î4b = f† , Î4b
† = f , Î4f = b† , Î4f

† = b . (1)

Here b†i |0〉 and f†i |0〉 create a particle and an antiparticle
in i-th state. In the proposed theory the CPT transfor-
mation does not commute with the particle exchange, for
example: bjbi = bibj but Î4(bjbi) 6= Î4(bibj). Specifically
let’s focus on the situation where

Î4(bibjbk . . . b
†
l b
†
mb
†
n) = fnfmfl . . . f

†
kf
†
j f
†
i ,

Î4(bibjbk . . . b
†
l b
†
nb
†
m) = −fmfnfl . . . f†kf

†
j f
†
i . (2)

States b†mb
†
n |0〉 and b†nb

†
m |0〉 are identical unless someone

try to invert the 4-dimensional space-time.
The exchange of particles between states i, j is given

by the operator

Êjibjbi = bibj , Êjifjfi = fifj . (3)

The basic proposal of the theory is the anticommutation
between the exchange and the CPT transformation

ÊjiÎ4 = −Î4Êji . (4)

This is obvious violation of Pauli exclusion principle, be-
cause it predicts the ensemble of like particles to be mix-
ture of symmetric and antisymmetric classes.[22] It also
means that positrons cannot be regarded as holes in elec-
tron sea.[23]

Let’s check that the energy remains positive and charge
remains odd for a system of spin 1/2 fields with above

properties. The textbook expressions[24, §3] for the en-
ergy and the charge are (omit spin indexes)

E =
∑
~p

ε~p(b†~pb~p − f~pf
†
~p) =

∑
~p

ε~p(b†~pb~p + f†~pf~p)− C (5)

Q =
∑
~p

(b†~pb~p + f~pf
†
~p) =

∑
~p

(b†~pb~p − f
†
~pf~p) + C ′ . (6)

These equations are valid when the antiparticle field f~p
is anticommuting. No conclusion can be derived about
statistics of the particle field b~p from Eqs. (5,6). There-
fore the next step is to verify the CPT invariance of en-
ergy and charge for commuting particle field b~p.

Looking ahead say that in present theory particles
with the “positive” frequency must be commuting, while
antiparticles with “negative” frequency must be anti-
commuting. The modern physics describes atoms in
our universe as made from anticommuting particles with
“positive” frequency. In present theory our universe is
predominantly made from anticommuting particles with
“negative” frequency.

Upon the CPT transformation we expect the energy
and charge operators to be preserved and commutation
rules to be kept valid. The charge should be always #
particles - # antiparticles; then the charge will change
sign upon exchange of particle and antiparticles. Besides,
Î4E flips the sign of ε~p in Eq. (5) because it counts for
time reversion in spinor Hamiltonian i∂/∂t. In order to
satisfy

Î4E = E , Î4Q = Q . (7)

we get additional rules

Î4(bjb
†
i ) = fif

†
j , Î4(b†i bj) = −f†j fi (8)

and vise versa. Combining them together

Î4([bj , b
†
i ]) = {fi, f†j }

Î4(δij) = δij
[bi, b

†
j ] = δij

 ⇒ {fi, f†j } = δij . (9)

we prove the CPT invariance of commutation rules.
The comparison of Eqs. (8,9) with the textbook case

of anticommuting particle fields is summarized in Table
I. First column labels variants of the theory; 2nd column
gives the commutation relations between particles and
between antiparticles; 3rd column is short form of Eqs.
(5,6) for half integer spin fields (#1)-(#4) and integer
spin fields (#5),(#6). Next (4th) column describes the
change of the sign in Eqs. (5,6) due to change of ∂/∂t
upon the time reversion. The 5th column shows trans-
formation of energy and charge operators upon the CPT
transformation Î4. The last 6th column shows whether
Î4 and Ê commute or anticommute.

There are two approaches to explain the CPT invari-
ance for anticommuting particles and anticommuting an-
tiparticles, see (#1) and (#2). In former case (#1) one



3

Var Commutators CPT-transformation Eqs. for E and Q Î4∂/∂t Energy&Charge Exchange

#1 {b~p, b†~q} = δ~p~q Î4(b~pb
†
~q) = f†~pf~q Î4(f†~pf~q) = b~pb

†
~q E =

∑
ε~p(b†b− ff†) ε~p → −ε~p Î4E = E [Î4, Ê] = 0

{f~q, f†~p} = δ~p~q Î4(b†~qb~p) = f~qf
†
~p Î4(f~qf

†
~p) = b†~qb~p Q =

∑
q0(b†b+ ff†) q0 → q0 Î4Q = Q

#2 {b~p, b†~q} = δ~p~q Î4(b~pb
†
~q) = f~qf

†
~p Î4(f~qf

†
~p) = b~pb

†
~q E =

∑
ε~p(b†b− ff†) ε~p → −ε~p Î4E = −E [Î4, Ê] = 0

{f~q, f†~p} = δ~p~q Î4(b†~qb~p) = f†~pf~q Î4(f†~pf~q) = b†~qb~p Q =
∑
q0(b†b+ ff†) q0 → q0 Î4Q = −Q

#3 [b~p, b
†
~q] = δ~p~q Î4(b~pb

†
~q) = f†~pf~q Î4(f†~pf~q) = b~pb

†
~q E =

∑
ε~p(b†b− ff†) ε~p → −ε~p Î4E = −E {Î4, Ê} = 0

{f~q, f†~p} = δ~p~q Î4(b†~qb~p) = −f~qf†~p Î4(f~qf
†
~p) = −b†~qb~p Q =

∑
q0(b†b+ ff†) q0 → q0 Î4Q = −Q

#4 [b~p, b
†
~q] = δ~p~q Î4(b~pb

†
~q) = f~qf

†
~p Î4(f~qf

†
~p) = b~pb

†
~q E =

∑
ε~p(b†b− ff†) ε~p → −ε~p Î4E = E {Î4, Ê} = 0

{f~q, f†~p} = δ~p~q Î4(b†~qb~p) = −f†~pf~q Î4(f†~pf~q) = −b†~qb~p Q =
∑
q0(b†b+ ff†) q0 → q0 Î4Q = Q

#5 [b~p, b
†
~q] = δ~p~q Î4(b~pb

†
~q) = −f†~pf~q Î4(f†~pf~q) = −b~pb†~q E =

∑
ε~p(b†b+ ff†) ε~p → ε~p Î4E = −E [Î4, Ê] = 0

[f~q, f
†
~p ] = δ~p~q Î4(b†~qb~p) = −f~qf†~p Î4(f~qf

†
~p) = −b†~qb~p Q =

∑
q0(b†b− ff†) q0 → −q0 Î4Q = −Q

#6 [b~p, b
†
~q] = δ~p~q Î4(b~pb

†
~q) = f~qf

†
~p Î4(f†~pf~q) = b†~qb~p E =

∑
ε~p(b†b+ ff†) ε~p → ε~p Î4E = E [Î4, Ê] = 0

[f~q, f
†
~p ] = δ~p~q Î4(b†~qb~p) = f†~pf~q Î4(f~qf

†
~p) = b~pb

†
~q Q =

∑
q0(b†b− ff†) q0 → −q0 Î4Q = Q

TABLE I: Variants of consistent definition of commutation rules and the CPT transformation: valid commutation rules are
transformed to other valid commutation rules. (#1) and (#2) are classical text book variants for half-integer spin fields. (#3)
and (#4) are rules for supersymmetric fields. (#5) and (#6) are possible rules for commuting integer spin fields. (## 1,3,5)
keep order of operators, (## 2,4,6) change order of operators. (##2,3,5) change the sign of energy and charge and should be
discarded. (#4) is brought in this paper as chosen by nature together with (#6).

keeps the order of operators in the CPT transformation;
the other approach (#2) is to change the order of oper-
ators in the CPT transformation, but this leads to un-
physical change in sign of energy and charge. There are
also two approaches to demonstrate the CPT invariance
for commuting particles and anticommuting antiparti-
cles, see (#3) and (#4) in Table I. Then Eqs. (8,9)
follow approach (#4); it flips the sign of ε~p and change
the order of operators, see also Eq. (2). We will see in a
moment that only methods (#2) and (#4) give correct
transformation of the Green function. This take me to
speculative conclusion that only method (#4) of present
work is correct and should be chosen by nature.

The commuting integer spin fields also have two vari-
ants of the CPT transformation preserving commutation
rules, see (#5) and (#6) in Table I. Textbook expres-
sions for energy and charge in (#5) and (#6) for integer
spin fields[24, §3] differs from Eqs. (5,6) by the sign and
transformation rules. Only the method (#6) keeps en-
ergy and charge and it is chosen by nature.

As pointed out in Landau course[19, §26], “a particle
with spin s may be regarded as composed of 2s particles
with spin 1

2”. Therefore the action of f†b† from (#4) cre-
ates integer spin anticommuting field violating (#6). We
conclude therefore that quantized vector and tensor fields
cannot be regarded as composite, and should always have
dedicated creation and annihilation operators.

The invariance of the Green function is to be proven
for one-body case, see Table II. The CPT transformation
of the Green function in the case #4 is obtained

Î4G(t, t′) = −G(t, t′) (10)

that is in agreement with generic G(−t,−t′) = −G(t, t′)
inside the light cone as noted by Pauli[25]. The in-
variance of the scattering matrix follows, thus bypass-
ing the geometrical arguments in favor of Pauli exclusion
principle[26].

The most subtle thing is the CPT transformation of

the powers of particle operators bj and b†j because of the

exclusion principle for antiparticle operators f†j and fj .

It will not allow any power of f†j and fj . We therefore
should admit the rule

Î4(b2j ) = Î4(b†2j ) = 0 . (11)

For the 1st glance this makes the theory inconsistent, but
actually the CPT transformation does not exist in real
world. So we should not be concerned with the energy
and charge loss by the above rule. Alternatively we can
say that the CPT invariance is broken in two ways: i)
it does not commute with the exchange, ii) it converts
multiple occupancy to zero occupancy.

III. INVARIANCE OF ORDERED PRODUCTS

The ordered product of quantum fields here means that
product has normal order (all creation operators are to
the left of all annihilation operators) or antinormal order
(all annihilation operators are placed to the left of cre-
ation operators). The exchange of particles (by action of

the operator Êij) means by the definition that the order
is preserved.

Regarding exchange in a product of many field opera-
tors, let’s first take example of Êijbibkbj = bjbkbi:

Êij = ÊikÊijÊkj , ÊikÊijÊkj Î4 = −Î4ÊikÊijÊkj (12)

We conclude that Î4 commutes with a product of even
number of exchange operators Eij and anticommutes
with a product of odd number of exchange operators. For
two states |1〉 and |2〉, which are i) made from vacuum
by an ordered product of field operators, ii) not having
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## −iTψ(x)ψ†(x′) = −iψ(x)ψ†(x′)
∣∣
t>t′

+ iψ†(x′)ψ(x)
∣∣
t<t′

−iT 〈0|ψ(x)ψ†(x′) |0〉 Î4G(t, t′)

orig
[
e−i(t−t′)ε~pb~pb

†
~p + ei(t−t′)ε~pf†~pf~p

]
t>t′
−
[
e−i(t−t′)ε~pb†~pb~p + ei(t−t′)ε~pf~pf

†
~p

]
t<t′

e−i(t−t′)ε~p
∣∣
t>t′
− ei(t−t′)ε~p

∣∣
t<t′

-

#1
[
ei(t−t′)ε~pf†~pf~p + e−i(t−t′)ε~pb~pb

†
~p

]
t<t′
−
[
ei(t−t′)ε~pf~pf

†
~p + e−i(t−t′)ε~pb†~pb~p

]
t>t′

−ei(t−t′)ε~p
∣∣
t>t′

+ e−i(t−t′)ε~p
∣∣
t<t′

−G∗(t, t′)
#2

[
ei(t−t′)ε~pf~pf

†
~p + e−i(t−t′)ε~pb†~pb~p

]
t<t′
−
[
ei(t−t′)ε~pf†~pf~p + e−i(t−t′)ε~pb~pb

†
~p

]
t>t′

−e−i(t−t′)ε~p
∣∣
t>t′

+ ei(t−t′)ε~p
∣∣
t<t′

−G(t, t′)

#3
[
ei(t−t′)ε~pf†~pf~p + e−i(t−t′)ε~pb~pb

†
~p

]
t<t′

+
[
ei(t−t′)ε~pf~pf

†
~p + e−i(t−t′)ε~pb†~pb~p

]
t>t′

ei(t−t′)ε~p
∣∣
t>t′

+ e−i(t−t′)ε~p
∣∣
t<t′

-

#4
[
ei(t−t′)ε~pf~pf

†
~p − e

−i(t−t′)ε~pb†~pb~p
]
t<t′

+
[
ei(t−t′)ε~pf†~pf~p − e

−i(t−t′)ε~pb~pb
†
~p

]
t>t′

−e−i(t−t′)ε~p
∣∣
t>t′

+ ei(t−t′)ε~p
∣∣
t<t′

−G(t, t′)

TABLE II: Four variants of the CPT transformation of time ordered product and Green function. Variants of theory are defined
in the same way as in Table I. The line labeled “orig” shows definition of Green function for half integer spin fields. Spin and
spacial dependency are taken as common in all cases and are not shown.

powers of bj and b†j above one, one has

|2〉 = Ên |1〉 ⇒ Î4 |2〉 = (−1)nÎ4 |1〉 . (13)

It means that the relative sign of ordered products post
CPT transformation is changed if and only if these states
are related by the odd number of exchanges.

There is no way to define the sign for the CPT trans-
formation of a single state |1〉. Once this sign is set, the
CPT transformations of all states |2〉 related to |1〉 by Eq.
(13) will have unambiguous sign. Let me also emphases
that Eq. (13) provides no information about the relative
sign of states |2〉 and |1〉. This depends on number of
exchanges between anticommuting fields.

Commutation between bj and fj is a generic property,
when one of two particles is bosonic:

[bi, fj ] = [b†i , f
†
j ] = . . . = 0 . (14)

The conservation of the charge Eq. (6) can be proven
now [H,Q] = 0 by making use of the commutation rules
Eqs. (9,14).

The permutation of particles with antiparticles to be
called swap. It can be defined as operator

Ŝijbifj = fjbi ŜÎ4 = Î4Ŝ , (15)

and it commutes with the CPT transformation as follows
from Eq. (14). The CPT invariance of ordered products
is now formulated as

|2〉 = ŜmÊn |1〉 ⇒ Î4 |2〉 = (−1)nÎ4 |1〉 . (16)

It means that the relative sign of ordered products post
CPT transformation is changed if and only if these states
are related by the odd number of exchanges and arbitrary
number of swaps.

IV. NON-INVARIANCE OF NON-ORDERED
PRODUCTS AND OF WICK THEOREM

The theorem Eq. (16) cannot be extended to non-

ordered products like bib
†
kbj . Let’s compare:

bib
†
kbj = b†kbibj + δikbj = bibjb

†
k − δkjbi

f†j fkf
†
i = −f†j f

†
i fk + δikf

†
j = −fkf†j f

†
i + δkjf

†
i .

Assume that the CPT transformation from bib
†
kbj to

f†j fkf
†
i preserves the sign, meaning Î4bib

†
kbj = f†j fkf

†
i .

Then the transformation of −δkjbi to δkjf
†
i violates Eq.

(1). If the CPT transformation from bib
†
kbj to f†j fkf

†
i

flips the sign Î4bib
†
kbj = −f†j fkf

†
i then the transforma-

tion of δikbj to −δikf†j violates Eq. (1).
Wick theorem as well as many body Green functions

are not CPT invariant in present theory. The process
with many indistinguishable particles is not the CPT
mirror of the same process with many indistinguishable
antiparticles. Comparing Wick theorem for four fields,
Table III, we see the term δilδjk + δikδjl in the right

hand side of expression for bibjb
†
kb
†
l . It cannot be the

image of the term δilδjk − δikδjl in the right hand side

of expression for fifjf
†
kf
†
l . The lead order diagrammatic

expansion of two body Green function is given by above
terms with product of δ-functions, therefore the evalu-
ation of the two-body Green function for particles and
antiparticles is not the same.

V. TWELVE POSTULATES FOR
SUPERSYMMETRIC SPINOR FIELDS

Let’s put together all rules required for consistent su-
persymmetric theory of spin 1/2 fields. The CPT trans-
formation

(i) converts particle creation operators to antiparticle
annihilation operators and vise versa;

(ii) converts normally ordered products of operators to
normally ordered products of operators and antinor-
mally ordered products of operators to antinormally
ordered products of operators

(iii) converts anticommuting half-integer spin fields to
commuting fields and vise versa, and therefore it
anticommutes with exchange for half-integer spin
fields;

(iv) keeps bosonic commutation rules for integer spin
particles and antiparticles;

(v) converts valid commutation rules to valid commu-
tation rules;
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## Wick theorem for four operators

#1 {fj , f†k} = δjk original: fifjf
†
kf
†
l = f†l f

†
kfjfi − f

†
l fiδjk − f

†
kfjδil + f†kfiδjl + f†l fjδik + δilδjk − δikδjl

{bj , b†k} = δjk 4-inverted: b†i b
†
jbkbl = blbkb

†
jb
†
i − blb

†
i δjk − bkb

†
jδil + bkb

†
i δjl + blb

†
jδik + δilδjk − δikδjl

#2 {fj , f†k} = δjk original: fifjf
†
kf
†
l = f†l f

†
kfjfi − f

†
l fiδjk − f

†
kfjδil + f†kfiδjl + f†l fjδik + δilδjk − δikδjl

{bj , b†k} = δjk 4-inverted: blbkb
†
jb
†
i = b†i b

†
jbkbl − b

†
i blδjk − b

†
jbkδil + b†i bkδjl + b†jblδik + δilδjk − δikδjl

#4 {fj , f†k} = δjk original 1: fifjf
†
kf
†
l = f†l f

†
kfjfi − f

†
l fiδjk − f

†
kfjδil + f†kfiδjl + f†l fjδik + δilδjk − δikδjl

[bj , b
†
k] = δjk original 2: blbkb

†
jb
†
i = b†i b

†
jbkbl + b†i blδjk + b†jbkδil + b†i bkδjl + b†jblδik + δilδjk + δikδjl

4-inverted 1: blbkb
†
jb
†
i 6= b†i b

†
jbkbl + b†i blδjk + b†jbkδil − b

†
i bkδjl − b

†
jblδik + δilδjk − δikδjl

4-inverted 2: fifjf
†
kf
†
l 6= f†l f

†
kfjfi − f

†
l fiδjk − f

†
kfjδil − f

†
kfiδjl − f

†
l fjδik + δilδjk + δikδjl

TABLE III: The CPT transformation of Wick theorem for four operators. Wick theorem is not CPT invariant for the super-
symmetric theory, variant #4, as opposite to the case, when all fields are anticommuting, variants #1 and #2.

(vi) conserves energy and inverts charge for single-
occupied states;

(vii) inverts sign of one-body propagator;

(viii) converts multiple occupancy to zero occupancy;

(ix) violates rule of signs in Wick theorem, makes
changes to many-body propagators and scattering
amplitude of indistinguishable particles;

(x) prohibits decomposition of scalar (spin zero) and
tensor fields (even spin particles) to product of half-
integer spin quantized fields;

(xi) prohibits truly neutral half-integer spin particle
which can be taken by the CPT transformation to
itself;

(xii) acts as a scalar supercharge having no matrix rep-
resentation in Fock space.

In connection with last postulate, the CPT transfor-
mation here plays a role of the scalar supercharge, be-
cause it converts bosons to fermions and vise versa. It
is similar to the Q-matrix in the theory of disorder and
chaos.[27] Coleman-Mandula theorem allows the scalar
supercharge[28], however it was never considered before
in supersymmetric many body theories, because of re-
strictions by Pauli exclusion principle.

As opposite to other supersymmetric theories, it is im-
possible to write the supercharge Î4 in terms of par-
ticle fields, or as a matrix acting in Fock space, e.g.
Î4b = U−1bU . In both cases Î4 will commute with the
exchange and violate Eq. (4).

In addition to above 12 postulates, difficulties are fore-
seen for the path integral method. An integral over com-
muting variables should be used for a retarded path and
an integral over anticommuting variables for an advanced
path.

Comparing the today textbook QED with the super-
symmetric QED, one concludes that crossections of single
particle processes like Thomson scattering and electron
positron annihilation should stay the same, because they
have no channels with exchange of indistinguishable par-
ticles. The annihilation will produce pair of orthogonal
photons, because the theory preserves internal symme-
tries of particles including parity.

VI. GROUND STATE OF POSITRONS IN AN
ANTIATOM

The best approach for calculation of S-wave state of
atoms with 1 and 2 electrons is the variational method
of effective charge.[29][Problem to §69] For the ground
state of Helium atom it gives 2% error.

We will apply the variational method of an effective
charge to the antiatom; it should be valid under assump-
tion that all Z positrons are condensed in lowest energy
S-wave state. The antiatom Hamiltonian describes Z
positrons in Coulomb field of nuclear of charge −Z. In
atomic units it reads

Ĥ =
∑
j

[
−1

2
∇2

j −
Z

rj

]
+

1

2

∑
i 6=j

1

|~ri − ~rj |
. (17)

The trial wave function for positron condensate in the
ground state to be taken as

ψ =
∏
j

φ(rj) , φ(r) =

√
Z3

eff

π
e−Zeff r (18)

and the energy functional in Hartree approximation be-
comes

E = 〈ψ| Ĥ |ψ〉 = Z
Z2

eff

2
− Z2Zeff +

5

8

Z(Z − 1)

2
Zeff (19)

It has minimum at

Zeff =
11

16
Z +

5

16
(20)

and the ground state energy of the antiatom becomes

EAA = −1

2

112

162
(Z + 5/11)2Z ∼ −0.24Z3 . (21)

The bound state for positrons is possible but it is much
more dense than the ground state of regular atom.

The most of positrons are located at r . RAA = 1/Zeff

meaning that the antiatoms are much smaller than atoms
at large Z. The density at the origin r = 0 is ρAA ∼
Z/(RAA)3 ∼ Z4, where AA means antiatom. For com-
parison the ground state energy of the Thomas-Fermi
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model of atom with Z electrons is ETF ∼ −Z7/3, the
radius RTF ∼ Z−1/3, and the density at the origin is
ρTF ∼ Z/(RAA)3 ∼ Z2.

In the same approximation the wave function of the
excited state is ψ1 = Z−1/2

∑
i φ1(ri)

∏
j 6=i φ(rj) where

〈ψ1| ψ1〉 = 1 and 〈ψ1| ψ〉 = 0. The exponent Z ′eff in
φ1(r) ∼ exp(−Z ′eff r)(1 − (Z ′eff + Zeff)r/3) obtained by

minimization of E1 = 〈ψ1| Ĥ |ψ1〉 turns out to be closed
to 2, meaning that the wave function of the excited
positron φ1 is same as of n = 2 state of Z = 2 atom.
The reason is the strong screening of the nuclear field by
the condensate; factor 2 comes from symmetrization of
the wave function. The excitation energy of a positron
for large Z is therefore close to the ionization energy
∼ −∂EAA/∂Z ∼ 0.7Z2.

The ground state energy of condensate of charged
bosons should be lower than EAA and can be found
by Bogoliubov transformation.[30] Coulomb interaction
creates plasma waves with wave number k2 ∼ ρ/k2,
where k2 comes from kinetic term and ρ/k2 comes from
Coulomb repulsion between positrons. The plasma fre-
quency is ωp =

√
4πρ ∼ Z2 and wavenumber is kp ∼

ρ1/4 ∼ Z. Energy of these waves contribute to the ground

state energy UAA ∼ −R3
AA

∫
k2d~k ∼ −R3

AAρ
5/4 ∼ −Z2.

It is small compare to the energy of the zero state EAA

and need not be considered for stability of bound bosons.
Excitations of the condensate have gap ∼ ωp ∼ Z2

comparable with the ionization energy. Therefore, there
are three competing effects for light absorption with en-
ergy close to Z2: antiatom ionization, excitation of one
positron from n = 1, Zeff ∼ Z state to n = 2, Z ′eff ∼ 2
state, and excitation of positron condensate.

VII. SUMMARY

In summary we postulate the theory of commuting
antimatter half integer spin fields. We calculated the
CPT transformation for charge, energy, green function,
ordered products, commutators and Wick theorem. All
single-particles operators are CPT invariant; Wick theo-
rem and interactions are not CPT invariant.

The theory predicts absence of the periodic table for
antimatter. Positrons in an antiatom shell occupy only
lowest S-state and form positron condensate. The con-
densate wave function is computed by the variational ef-
fective charge method, and the ground state energy was
found ∼ −Z3. We identified few types of excitations, and
all of them have energy ∼ Z2.

The maximal allowed Z for antiatoms depends on the
limiting mechanism (which is still subject of controversy
for atoms). For scenarios depending on charge density
the antiatom maximal Z goes as square root of maximal
Z for atoms.

It is not possible to build antimatter from antiatoms
because of instability of bosonic matter and lack of the
thermodynamic limit. Clusters of antimatter can possi-
bly form bound states of high density. Indeed the an-
tiatom shell dimension scales as Z−1 and therefore much
smaller than size of atom ∼ Z−1/3, meaning collapse of
antiatoms in absence of degeneracy pressure.

The work explains the baryon asymmetry of the uni-
verse (BAU). Amount of antimatter could possibly be
equal to amount of matter, but it should exist in highly
dense form and have very peculiar absorption spectra.
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