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Hypothesis of Bosonic Antimatter
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A study based on the hypothesis that bosonic commuting fields annihilate fermionic anticom-
muting fields is presented. If this process is allowed, scalar grading of the SO(1;3) group can be
employed and a supersymmetric superinvariant quantum electro-dynamics (QED) can be developed.
Further, the Pauli spin—statistics theorem does not hold, the gauge invariance holds for kinetic terms

only, and scattering unitarity is preserved.
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Four prominent problems persist in modern physics.
First, the elegant theory of supersymmetric fields[l, 2]
is not supported by any experimental evidence, follow-
ing analysis of a dataset of 35 fb~1.[3] Second, anti-
matter statistics should be fermionic according to the
Pauli spin—statistics theorem. However, the supporting
experimental evidence is very limited: no positron scat-
tering has been measured,[4] and no antiatoms or anti-
molecules with two positrons have been observed.[5, 6]
The ground-state spin configuration of a dipositronium
molecule is inaccessible because of the short lifetime of
dipositronium in a magnetic field.[4] The third prob-
lem is related to the natural proof of the Pauli spin—
statistics theorem.[7] The exchange symmetry of the
SO(1;3) many-body wave function computed through
group embedding into SO(N;3N) space[8, 9] yields anti-
commutation of left spinors and commutation of all other
pairs of spinor fields.

Fourth, the universe has very clear matter—antimatter
asymmetry, which is understood today in terms of so-
phisticated symmetry violations[10, 11] that are unlikely
to occur[12]. The development of modern physics clearly
collided with the barrier of matter—antimatter asymme-
try 50 years ago, with the report by Sakharov[13]. To
overcome this barrier, one of the following avenues should
be pursued: development of new mechanisms of symme-
try breaking satisfying Sakharov’s conditions or adjust-
ment of the well-established quantum electro-dynamics
(QED) formalism, with recalculation of some basic QED
predictions.

By adopting the second approach, a formalism yield-
ing a hypothesis of bosonic antimatter can be obtained.
Therefore, with the required additional caution, a su-
persymmetric superinvariant QED action is proposed in
this study. It is speculated that matter and antimat-
ter have opposite observable statistics, which explains
matter—antimatter asymmetry. As matter is known to
annihilate antimatter, the present theory ultimately ne-
cessitates the possibility that a fermionic field can be
annihilated by a bosonic field, and vice versa.

At first glance, a symmetric many-body wave cannot
annihilate an antisymmetric many-body wave. However,
particle-antiparticle annihilation is a single-body process
and can apply to fields with opposite statistics. Note

that, if IV fermionic particles meet N bosonic antiparti-
cles, they will not simultaneously annihilate (this process
is forbidden). Instead, annihilation will occur on a one-
by-one basis.

The obvious difficulty associated with a theory in-
volving anticommuting left spinors and commuting right
spinors is that the low-energy fermions of modern QED
are in a mixed state of left and right spinors; thus,
they cannot be half commuting and half anticommuting.
Therefore, a low-energy matter field must be constructed
from the left and left-conjugated spinors, while antimat-
ter can be generated from the right and right-conjugated
spinors.

The derivation of this theory is initiated using a
superalgebra[14] obtained by utilizing an orthogonal Lie
algebra and a scalar supercharge. This yields the same
symmetry (spin) for both commuting and anticommuting
fields, as in the theory of disordered metals.[15] Commut-
ing fields in the theory of metals are replicas of anticom-
muting fields, yielding a few subalgebras of gl(n|n).[16]
In the present theory, the supercharge acts as the charge
conjugation. Thus, anticommuting and commuting fields
have the same symmetry (spin) but represent physically
different particles.

The spatial rotations for a bispinor representation v of
the SO(1; 3) group are generated by the matrix T', where

S =T, p°=Ty°, CT*C=T
61/1’114 — _qu , (chu — —’(/JCUT , C/thl —_7T
Ye=Cyt, Pt =9 (1)

Here, superscript ¢ represents a transposed vector, C' is
the charge conjugation matrix, and C’ is the time inver-
sion matrix. Explicitly, C?> = 1, C* = C and C"? = 1
depend on the choice of representation for 7.
Superrotations are generated by the Grassmannian su-
percharge @ satisfying QQ° = —Q°(Q, such that

o = QW , 0¥ =Q¢, Q°=CQC
Oq" =Q, 0™t =9"Q, (2)
Here, 1 is the SO(1;3) bispinor ¢y, @ g and ¥° is the

charge-conjugated bispinor 9 ® 7. The 9 and ¥g
fields denote left and right spinors, respectively (dotted



and undotted spinors in other notation systems). There-
fore, the commutation rules are as follows:

Hwa7¢6]] =0,
a4 {l/}La(bL} =0 3

[V, 951 =0 (3)
(YR, ¢rR] =0, [Yr,6r] =0,

where ¢ is another bispinor. In this multiplet, the ¥
and 9y, fields and the ¥, and v} fields are commuting
and anticommuting components, respectively.

The superalgebra is constructed utilizing the second
variations in Eqgs. (1) and (2). The grading is defined as
follows:

Lo =End(T) L_,=End(Q°) L;=End(Q)
550(1;3“) :L71 @L()@Ll . (4)

Here, supercharges (Q and ¢ must anticommute to an
ideal of Ly, which is zero for the case of Ly, being the
special orthogonal algebra.[17]

The gauge invariance is one of the most essential com-
ponents of QED. In the present theory, the gauge invari-
ance is introduced as

Sath = iA(x),YFIVEw , 5a¢6 — Z’A(:E),yFIVEwC. (5)

Here, A(x) is the wave-function phase and the  matrices
can be defined as in Refs. [8] or [18, Ch. II].

For the generic superinvariant Lorenz vector v* and
superinvariant Lorenz scalar s (note: the scalar below is
not gauge invariant, similar to the theory of Majorana
fermions), the following relations hold:

vt = @iyt — @AY dgutt = et =0,
ovtt = U [y", Ty — ¢ [y, Ty,
s = ¢ — p"yY°, s =045 =0. (6)

Hence, the superinvariant QED action

s=iY {wzpwwp—mwmg )

po>0,p

A+ mwwp}
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pp’

is derived, where e and m are the particle charge and
mass, respectively, ¥4 = ~A*4*VE  and the C'4* =
C'y"~4"IVE matrices are all symmetric. The factor 1/2
in the interaction part of the action S; compensates for
double counting. For the same reason, S is expressed as
a sum over pg > 0. The Fourier—transformed fields are
defined such that ¥y = (¢¥_p)°.

The commuting and anticommuting fields are sepa-

model 4-vector scalar gauge super
form form invariant | invariant
Textbook |¢L¥r + drYr|PLYR + dRYL|  yes no
[18, Ch. II]
Majorana PLYL LWL + drr | vector no
only
This work |¢rYr + ¢rUL | @1 YR + dRYL |oOr vector|  yes
+ c.c. + c.c. or scalar

TABLE I: Comparison of symmetries from various theories.
Here, v matrices and other spin-dependent factors are omit-
ted.

rated using the following component re-ordering:

YRt  Yrp —YRrt

Yoy Yoy YRy

Yy Yrr — Rt
Uy _ YRy _ YRy ‘1/11,% _ Yry 8)
o YRy Y Wk i

Vi, Ukt YLy

Yiv YRy YLt

YR YIs VL,

Hence, the supersymmetric QED action is

S =i Yy U (yp,—m)¥y
po>0,p
+UL (=, — m)llff‘}
Sy = iey W A, Wl (9)
pp’

The “antiparticle” second term of the action S can be
combined with the “particle” first term via the substitu-
tion po — —po. The sum in the exponent e+ should
be taken as a product of exponents, to handle the lack of
commutation between \Illf;“.

The theory features two Green functions that can be
computed through regularization of superintegrals over
commuting Y1,z and anticommuting W¥.,7 variables.
Thus,

Yo +m

LR __ - Ly R _

Gt = (V) = e (10)
RL _ . gRgl \_ —YDutm

Gt = i) = ey ()

Here, po > 0, and GII;“R and GﬁL propagate particles
and antiparticles, respectively. The regularization re-
quires additional terms such as (i€ — 0)UFUE* in the
action, where £ is a non-vanishing real number; then, &
is dropped from the final result.

Particles are created with the fermionic operator \IJI%
and annihilated with the bosonic operator \Illfp. Further,
antiparticles are created with the bosonic operator \I'f
and annihilated with the fermionic operator W% . Spec-
ulatively, it is claimed that the experimentally measured
statistics of a particle are determined upon its birth.



The scalar mass term in the action described by
Egs. (7) and (9) is similar to textbook QED.[18, Ch. II]
However, the vector kinetic term is different (see compar-
ison in Table I). This is the only method of expressing
a supersymmetric Lorentz invariant action found by the
author. The gauge invariance must also be incorporated;
however, v* and s cannot be gauge invariant at the same
time.

The generic form of the conserved current derived from
any of the kinetic terms in Eq. (7) utilizing the Noether
theorem is j# = ¢ y#d,1py, where d, represents any of
the variations introduced in Eq. (1). With d§, = d,, we
obtain j* = ayty09") + bipTy"VEAOyte) where a, b are
arbitrary numbers. Here, j# is Lorentz and gauge invari-
ant; however, it is not superinvariant. In addition, j*
is a bosonic 4-vector, because it pairs a left-conjugated
spinor with a left spinor (both anticommuting) and a
right-conjugated spinor with a right spinor (both com-
muting). Therefore, the bosonic spin-one field may be
regarded as being composed of two spin-half fields, even
under the theory of mixed statistics for spin-half fields.
Note that a comment in Ref. [19, §25] raises concern re-
garding a possible fermionic spin-one field violating the
Pauli spin—statistics theorem if mixed statistics for spin-
half fields is allowed.

Examples of four main interaction processes are given
to illustrate supermultiplet propagation. Four correc-
tions to the two-body propagator are made by integrating
out the vector potential fields A,,. One has

S] =i€2 Z

p—p'+k—k’'=0

Dy, 08 AMULwE, 5, 0k (12)

where D, = i(A,A_,) is the photonic propagator and
the scattering channels are
Do, Do, ko, ki > 0
Do, Do, ko, ki < 0
Po, Py > 0, ko, ki < 0
po, ky < 0, py, ko >0

particle — particle
antiparticle — antiparticle
particle — antiparticle

annihilation and birth .

The scattering unitarity [19, §72] for unsymmetrized
waves means that

Mfiz i*f7 Mfl‘/ :M;;f> Mf’i:Mi*f’ ,Mf/i/ = iff’

(13)
where M is the scattering amplitude for a two—body ini-
tial state i, a two-body final state f, and states with
permuted particles i’ and f’. The scattering unitarity is
evidently preserved upon symmetrization or alternation
over the initial or final states.

This theory can be further developed using various ap-
proaches. The procedure depends on the definition of the
observed current and the density and formalism used to
calculate this current. This is the point at which the col-
lateral provided by experimental data is ultimately nec-
essary. Let us assume that experimental data confirm
that antiparticle scattering differs from particle scatter-
ing. This can be explained by symmetrization (alter-
nation) of the amplitude of Eq. (12) over initial states

only. However, justification of this procedure requires
considerable effort, for example, through application of
the Keldysh formalism.[20]

The concept of graded superalgebra sso(1;3|1) origi-
nates from exchange rotations derived using the group
embedding method. The scalar grading of the or-
thogonal algebra so(1;3) can be generalized for higher-
dimensional algebras so(IN;3N). The branching rules of
4N-dimensional spinors upon group embedding of

so(N + M;3N +3M) — so(N;3N) ® so(M;3M) (14)
are[21, 22]

N+M s N @M @yl @ M
MM N @M oyN @ YN . (15)

It is, therefore, possible to define ¢, and ¥ g respectively
as anticommuting and commuting fields for any N, and
these commutation properties are preserved upon embed-
ding of the maximal subalgebra given by Eq. (14).

For odd N, the superalgebra sso(N;3N|1) is obtained
by grading of so(N;3N) with a scalar supercharge Q™.
The variation of Eq. (15) allows to derive branching rules
for so(N;3N) generators TV and the scalar supercharge
QV. The branching rules for TV follow theorem stat-
ing that the adjoint representation is branched to sum of
adjoint representations and product of the vector repre-
sentations of subalgebras. The branching rules for QV
are

QVtM =N ®1™ odd NN+ M .
QN™ =0 odd N,M (16)

The scalar supercharge must be zero for even N, because
in this case ¥" is self-conjugated. Therefore, it is not
possible to define grading for so(NN;3N) with even N.
Use of the sso(N;3N|1) notation for even N remains
possible, assuming this is the same algebra so(N;3N)
with anticommuting left and commuting right spinors.

The following maximal supersubalgebra embedding
segregates the 4N-dimensional space to 4-dimensional
subspaces:

$50(N;3N|1) — ss0(1;3|1) @ --- ®ss0(1;3|]1)  (17)

The exchange rotation is the transformation exchang-
ing any two 4-dimensional subspaces of 4N-dimensional
space. A tedious but straightforward calculation yields
the following transformation of the sso(N;3N|1) spinor:

’(/JLLEm?:E/g —¢LL((9U 7',1)7)

Yrr(z, o’ Yro(2,

Yr(z,x") - Yrr(a',x) 7 (18)
Yrr(z, ) Yrr(2', )

where indexes and coordinates correspond to the two
exchanged subspaces.[8] The 22 components of the
550(N;3N|1) spinor are indexed according to the indexes
of the N embedded ss0(1;3|1) 4-component bispinors.



This symmetry lowering to four dimensions gives the
generalization of the Heisenberg spin exchange matrix:

Heg
S S S A M (19)
Ur(@)on(@) VR )on(z)

Therefore, it can be stated that the commutation rules of
s50(1; 3|1) operator fields Eq. (19) are in agreement with
the exchange rotations Eq. (18) of the sso(N;3N|1) field.

In summary, a hypothesis of bosonic antimatter based
on supersymmetric, Lorentz invariant QED has been pro-
posed in this paper. In this theory, the superfields are as-
sociated with representations of sso(1;3|1) algebra with
scalar grading. The branching rules for sso(N;3N|1)
graded algebras to sso(1;3|1) embedded supersubalge-
bras are discussed. In addition, it is demonstrated that
sub-space exchange rotations in sso(N;3N|1) algebra (as
in Eq. (18)) are equivalent to field permutation Eq. (19)
in graded sso(1;3|1) subalgebra.

The theory is feasible only if annihilation between com-
muting and anticommuting fields is permitted in nature.
This is the major difference between proposed supersym-
metric QED and the textbook theory. The energy disper-
sion of both matter and antimatter particles is preserved
together with the propagators and scattering amplitude.
Therefore, diagrammatic calculation of most observable
processes should reproduce the well-established results.
The difference appears in summation of diagrams over
permutation of particles and loop diagrams.

The author believes that the proposed theory can ex-
plain matter—antimatter asymmetry of the universe due
to a lack of degeneracy pressure in antimatter stars. In
this way, this problem will be resolved without charge,
parity, and time reversal (CPT) violations, as opposed
to some modern theories.[11] The author also hopes that
this publication will motivate research on antimatter—
antimatter interaction, as almost no experimental data
are available at present.
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