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Thunderstorms generate strong flows of 511 keV gamma rays, indicating that a substantial number
of positrons participate in this process. This makes people think that ball lightning is the vortex of
electron-positron plasma. The stability of the plasma can be achieved by balancing the attractive
Coulomb forces between electrons and positrons by their kinetic energy. The concept of first order
phase transition leading to the formation of electron–hole drops in semiconductors is known since
the 1970s. However, the electron–hole liquid drop has a short lifetime and cannot describe relatively
long-lived ball lightning. Here, I report two–species Wigner crystal solution to the equation of state,
which is only possible when positive and negative charges have exactly the same mass. The model
is valid for all observed ball lightning temperatures, however at some point it could be quantum
melted state. The annihilation of electron–positron pairs and evaporation of electrons and positrons
from the crystal surface set the ball lightning lifetime. The evaporation of the crystal is found to
be governed by the power law; it is calculated together with the density of the surrounding free
electron–positron plasma by matching the chemical potentials. For a realistic temperature range,
the density of the crystal is sufficiently low and prevents extensive annihilation of electron–positron
pairs. Experimental detection of 511 keV gamma rays sourced from a ball lightning will confirm
this theory.

Discovery of 511 keV annihilation radiation com-
ing from thunderstorms [1–6] suggested the presence of
positrons in ball lightning [7]. The most comprehen-
sive modern book summarizing ball lightning data [8],
Chap. 1, provides the following definition of the ball light-
ning: “Ball lightning is a luminous globe that occurs in
the course of a thunderstorm. It is most often red, al-
though varying colors including yellow, white, blue, and
green have also been often reported for the glowing ball.
The size varies widely, but a diameter of one–half of a
foot is common. Its appearance is in striking contrast to
ordinary lightning, as it often moves in a horizontal path
near the earth at a low velocity. It may remain station-
ary momentarily or change the course while in motion.
Unlike the rapid flash of ordinary lightning, ball light-
ning exists for extended periods of time, several seconds
or even minutes.”

A prosperous theory should explain eight characteris-
tics of ball lightning.[9, 10] We will not repeat all of them,
particularly challenging facts are (iii) “its occurrence in
both open air and in enclosed spaces such as buildings
or aircraft” and (vii) “the fact that it appears to pass
through small holes, through metal screens, and through
glass windows”. Positron based ball lightning has the
advantage of high diffusion owing to the small mass of
positrons, and according to [7] can penetrate thin layers
of solid matter. In this way, the positron based theory
explains characteristics (iii) and (vii).

The latest observations and spectroscopy data indicate
the presence of soil elements in the ball lightning [11] for
the entire lifetime, which one can call fact (ix). A few
recent publications have assumed that lightning strikes
the ground and evaporates the soil elements from the ball
lightning [9]. The lightning strike on a conducting surface
produces a significant amount of high–energy electrons
[12] and positrons [13] in favor of the electron–positron

model.

The stable cloud of electron–positron plasma propa-
gating freely in air is a fascinating new model that lacks
rigorous mathematical description. This model is the
first example of a stable free low–density plasma and can
have a significant impact on the physics of positrons. For
instance, very significant experimental and theoretical
efforts have been made to build traps for positron and
electron–positron plasma [14, 15]; the electron–positron
clouds can be seen as natural positron storages.

In this study, I demonstrate the stability of neutral ball
lightning made from electron–positron plasma in a wide
range of temperatures and independent of air pressure
and temperature. So far, it has not been possible to find
a satisfactory stable electron–ion plasma model for ball
lightning (please refer [8], Chap. 8L). The calculation
shows that the electron exchange interaction is too weak
and can handle the stability of ions only at relatively
low temperatures (below 600◦K). In some electron–ion
models [16], the air is assumed to be excluded from the
ball lightning internal space, and the electron–ion plasma
is under atmospheric pressure. However, these types of
models are stable only at ambient temperatures.

The physics of electron–positron systems is similar to
that of the physics of electron–hole systems in semicon-
ductors, particularly the interaction with light, life time,
vacuum breakdown by the electric field, and other effects
are described in a similar way. Therefore, it is worth
looking if any quantum bound states of a large number
of electrons and holes have been observed in semicon-
ductors. The 1970 paper of Keldysh [17] was probably
the first to mention the electron–hole drops and first or-
der phase transition from electron–hole gas to liquid in
semiconductors. Consequently, the free energy and phase
diagrams for electron–hole liquid have been reported in
a few papers [18, 19] including experimental data [20].
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Each of the ground states of the electron–positron
pair (positronium) and electron–hole pair (exciton) have
its own Bohr radius a0, which is the typical “size” of
the charge pair. The luminescence from electron–hole
drops [20] indicates the average distance between charges
d ∼ a0, which is required for efficient electron–hole re-
combination. The electron–positron drops with similar
properties rs = d/a0 ∼ 1 were simulated recently [21, 22],
they have very short life time too. For the purpose of the
theory of ball lightning, we need to find a novel state
with a long lifetime, and low density rs ≫ 1; such a state
would be invisible in semiconductors, and it was never
described in semiconductor literature to the best of my
knowledge.

In the present study, I use a model similar to the
Wigner lattice, see [23] Chap. 5.2, assuming that elec-
trons and positrons oscillate near the sites of a cubic
lattice. Thermal fluctuations of electrons and positrons
balance the Coulomb attraction force. The advantage
of this model is the electron and positron wave func-
tions separated by a long distance, which suppresses the
electron–positron annihilation rate. The solution shows
that the condition rs ≫ 1 is fulfilled for the entire range
of temperature (up to 14000◦K) observed [8] in ball light-
nings, and therefore the proposed model is stable against
electron–positron annihilation.

The one component (e.g. electron) Wigner lattice de-
scribes electrons in solid and therefore charge density
N/V and temperature T are independent parameters.
Both Monte-Carlo simulations[24, 25] and lattice vibra-
tion model[26] predict melting of the Wigner lattice when

Γ ≡
(
4π

3

N

V

)1/3
e2

T
≲ 160 (1)

For the electron–positron cloud in air we need to find
the equilibrium between the solid crystal state and the
surrounding plasma evaporating from the crystal. Calcu-
lation gives Γ ∼ 10, and therefore the equilibrium state
is most probably ”melted” Wigner crystal. In the same
time analysis of lattice vibrations yet to be done for two
components Wigner lattice.

I propose the evaporation of charge pairs as the
main mechanism limiting the lifetime of the dual species
Wigner crystal. The calculation follows the text book
problem [27] §81. I found a reasonable evaporation rate
for the entire range of temperature, and the lifetime in
a range from a few hundred seconds at low temperature
to a few seconds at high temperature. The instability
towards the formation of high-density quantum liquid
drops followed by electron–positron annihilation is also
possible. The lifetime calculations for this mechanism
are yet to be done.

In this study, I work on the quantum bound state of
a system of N electrons and N positrons occupying lat-
tice sites in volume V with distance d = n−1/3, where
n = N/V is the density. I start the calculation with the
equation of the wave function of the electron/positron

Hψ = Eψ, with the spinless Hamiltonian, which is as
follows

H = − ℏ2

2m
∇2 +

∑
j

e2

|r⃗ − r⃗j |
−

∑
k

e2

|r⃗ − r⃗k|

 (2)

where r⃗j runs over sites of same charge sign and r⃗k runs
over sites of opposite charge sign.
The quantum mechanical problem can be solved using

the variation method. Taking the trial wave function
from the ground state of a harmonic oscillator

|ψ0⟩ =
κ3/2

π3/4
e−κ2r2/2, ⟨ψ0| ψ0⟩ = 1 (3)

for each term of the potential energy we obtain

⟨ψ| e2

|r⃗ − r⃗j |
|ψ⟩ = e2

|r⃗j |
g(κrj), g(x) =

4√
π

∫ x

0

x2dxe−x2

(4)
The final expression for the energy contains the well
known kinetic energy of a harmonic oscillator plus sum-
mation of sites r⃗j , which we replace by summation of
neighboring shells as follows:

⟨ψ|H |ψ⟩ = ℏ2

2m

3

2
κ2 +

e2

d

∑
l

ul
Rl
g(Rlκd) . (5)

Here, l is the index of the neighbor shell, ul is the number
of neighbors including the interaction sign, and Rl is the
radius of the shell. Each neighbor shell l is a set of sites
at the same distance from the origin |r⃗j | = Rld.
According to the variation method, Eq. (5) should be

minimized with respect to κ. This leads to the equation

κa0 +
8

3
√
π

∑
l

ul(Rlκd)
2e−(Rlκd)

2

= 0, (6)

where a0 = ℏ2/me2 is the Bohr radius. In the range of
interest

rs ≡ d/a0 ≫ 1, κa0 ≪ 1, κd ≳ 1 (7)

the solution is set by the exponent of the shell l = 0, and
with a reasonable approximation

κ =
rd
d
, rd =

1

R0

√
ln

8

3
√
π
|u0|R0rs ≈ 1.7

√
ln rs (8)

The low-density limit rs ≫ 1 is the generic case for the
Wigner lattice approach (please refer [23], Chap. 5).
The calculation of the higher energy levels becomes

mathematically complicated. Fortunately, high-order
harmonic wave functions with zero angular momentum
give the minimum energy at the same κ, because it is set
by the exponent in g(x) in the potential energy term of
Eq. (5). I will therefore approximate the energy of higher
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Lattice Type Lattice const R0 u0 R1 u1 M

CsCl bcc, 1
√
3/2 −8 1 6 1.76

NaCl fcc, 3
√
4 3

√
4/2 −6 3

√
4/

√
2 12 1.74

ZnS fcc, 3
√
4 3

√
4
√
3/4 −4 3

√
4/

√
2 12 1.64

TABLE I. The Madelung constant M for few lattices; it can
be formally defined as M/R0 = −

∑
l ul/Rl, where ul is the

signed number of nodes at a same distance Rl from the center,
and l is the number of indexing neighbor shells. The sum of
shells is divergent, however the sum of planes is convergent.
[28] The lattice constant is chosen in such a way so as to have
two nodes in a unit cell.

energy levels by the harmonic series with level separation
per dimension as follows:

∆E =
ℏ2κ2

m
=

ℏ2r2d
md2

(9)

and offset −U0, where U0 is the potential energy in the
limit κ→ ∞ in Eq. (5) as follows:

U0 = −e
2

d

∑
l

ul
Rl

=
e2

d

M

R0
(10)

The lattice sum in Eq. (10) converges asymptotically, Ta-
ble I. gives the Madelung constant M for a few lattices.

The free energy F(N,V,T) for electrons (or positrons)
is obtained by summing the oscillator states as follows:

F = −NT ln
eU0/T

8 sinh3(∆E/2T )
≈ −NU0 + 3NT ln

∆E

T
(11)

where the high-temperature limit T ≫ ∆E is justified.
Indeed, a stable solution requires a balance between ther-
mal fluctuations and the Coulomb attraction force

T ∼ e2/d≫ ∆E ∼ e2a0/d
2 , (12)

by virtue of Eq. (7), and for the same reason, the theory
holds in a very broad range of temperatures.

e2/a0 ≫ T > 0 . (13)

The ground state at T = 0 should be excluded; the bal-
ance between quantum fluctuations and the Coulomb at-
traction force is possible only at d ∼ a0, violating the
low-density assumption.

The substitution of Eq. (8) and d = (N/V )−1/3 into
Eq. (11) leads to

F = −e
2M

R0

N4/3

V 1/3
+NT ln

[(
ℏ2r2d
mT

)3
N2

V 2

]
. (14)

The obtained free energy Eqs. (11,14) follows general re-
sults for crystals at high temperature[27]§65, particularly
it is characterized by a constant specific heat C = 3N .
The electron (positron) partial pressure P and chemical

potential µ are

P = −∂F
∂V

=
2NT

V
− e2M

3R0

(
N

V

)4/3

(15)

µ =
∂F

∂N
= 2T + T ln

[(
ℏ2r2d
mT

)3
N2

V 2

]
− 4e2M

3R0

N1/3

V 1/3

(16)

The derivatives of rd are neglected when computing P
and µ. The chemical potential of Eq. (16) is anal-
ogous to the µ(n) curve for electron–hole systems in
semiconductor[18]. Eq. (16) lacks the term µ ∼ n2/3

originating from 1/r2s ∼ n2/3 in the ground state energy
at zero temperature. This is because Eq. (16) was derived
in the low–density approximation rs ≫ 1. The system
with the free energy, represented by Eq. (11) has no liq-
uid phase. The formation of the liquid phase requires a
positive branch of µ(n) for n→ ∞.

Realistic ball lightning demonstrates little interaction
with air and the ability to penetrate thin layers of solid
matter. For this reason, air pressure can be neglected.
The crystal part of the ball lightning must be surrounded
by the gas of electrons and positrons evaporating from
the crystal. This will be my model for further calcula-
tion of the crystal state properties and lifetime. I also as-
sume that only the electron–positron pair in some excited
states can leave the crystal while preserving the charge
neutrality. The density of both the crystal nc and the
surrounding vapor of electron–positron pairs nf is com-
puted by matching the chemical potential, temperature,
and partial pressure between the two phases.

The pressure of the vapor above the solid is typically
small, and assuming P = 0, one finds the density of the
electron–positron crystal as follows:

nc =

(
6R0

M

T

e2

)3

. (17)

This point is on the raising branch of the P (V ) curve so
it cannot exist alone for a long time. A positive pres-
sure is required to drive the system into a stable equi-
librium between the crystal and the surrounding vapor.
The calculation of the exact coexistence curve P (T ) is
not required for the purpose of this work, because the
pressure of the surrounding vapor is not maintained and
the electron–positron crystal evaporates.

The evaporated electron–positron pair should have a
binding energy of T , and therefore a size of about d, and
the moment of inertia is given by I ∼ md2/2. Then,
the free energy for electron–positron pairs [27] §47 is as
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follows

Ff = −NfT ln

[
2.7Vf
Nf

(
mT

πℏ2

)3/2
2IT

ℏ2

]
(18)

µf = T ln

[
Nf

Vf

(
πℏ2

mT

)3/2
T

E0

]
(19)

2IT

ℏ2
∼ mT

ℏ2

(
6R0

M

T

e2

)−2

≡ E0

T
(20)

Here the index f marks quantities that belong to evapo-
rated electron–positron pairs, particularly nf = Nf/Vf .
I am not counting the spin degeneracy just for consis-
tency with previous calculations. The matching of µf

with twice µ from Eq. (16), and N/V obtained from
Eq. (17) gives

nf
nc

=
r12d

2.7212π3/2

(
T

E0

)7/2

≡
(
T

E′
0

)7/2

(21)

where E′
0 absorbs all constant factors. The evaporation

rate per area [27] §81 is
√
T/mnf , therefore

Ṅ = −6N

L

√
T

m

(
T

E′
0

)7/2

,
N

L3T 3
= const. (22)

where the surface area of a ball lightning is approximated
as 6N/(ncL), and L is the diameter connected to N and
T by Eq. (21), and nf is derived from Eq. (17).

The cooling of the ball lightning by evaporation must
be accounted for in the proper life time calculation. The
relevant exponent γ is as follows:

TN−γ = const , γ =
(sf/2− sc)

cv
=

5

4
(23)

where sf is the entropy per free electron–positron pair,
and sc and cv are the entropy and the specific heat per
electron in the crystal. The above equation means that a
ball lightning loses its temperature (the cooling process)
at almost teh same pace as the mass. Then, the solution

to Eqs. (23,22) is

N = N0

(
t

t0
+ 1

)−0.17

,
0.17

t0
=

6

L0

√
T0
m

(
T0
E′

0

)7/2

(24)
where N0, T0, and L0 are the initial values of the number
of electrons N , temperature T , and ball lightning size
L, respectively. Consider for example, a L0 = 100cm
ball lightning at a temperature of T0 = 5000◦C (see [9]
interpretation of the data from [11]). The time of the
drop of the temperature four times and the number of
charges three times is 50s.
I conclude that the lifetime of the proposed electron–

positron crystalline state with respect to evaporation is
reasonable and comparable with the observed in nature.
The lifetime with respect to electron–positron annihila-
tion is yet to be calculated; I expect this process to be
slow because of the small overlap between electron and
positron wave functions in the crystal state. At the same
time, the detection of 511 keV gamma rays originating
from a ball lightning would confirm the present model.
The physics of the mixed Wigner lattice is very dif-

ferent from the physics of the repulsive Wigner lattice,
where the distance is fixed and depends on the number
of charges and the size of the system. For instance, we
report a negative temperature expansion coefficient for
the lattice state, because higher kinetic energy should be
balanced by stronger attraction forces and closer distance
between electrons and positrons.
The electron–positron plasma has been studied in de-

tail for many years. Most studies have focused on high–
density plasma in pulsars, and low–density plasma in
various traps and plasma waves and excitation.[14, 15]
Therefore I assume that the two species Wigner lattice
is proposed for the first time in this work. Plasma traps
typically have a focusing effect and promote the forma-
tion of positronium. The purpose of the present study is
to find a long living state that prevents electron–positron
pairing.
In brief, I calculated the free energy and the equation

of state for neutral electron-positron clouds by using the
Wigner lattice approach. This state of matter can be
observed by registering 511 keV gamma rays coming from
a ball lightning.
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