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Spontaneous symmetry lowering of the SO(N,3N) metric field interacting with
massles spinor

Daniel L. Miller1

1Intel

The symmetry broken solution (ground state) of the SO(N, 3N) field theory is calculated by non-
perturbative methods (N -times repeated Hubbard–Stratonovich transformation). The high symme-
try fields are 4N dimensional metrics tensor and 22N dimensional spinor. The low symmetry fields
are sum of 4 dimensional metrics tensors and product of 4 dimensional super–symmetric spinors of
the SO(1, 3). All the efforts are made to find the solution where each embedded SO(1, 3) subspace
get its own scale (shrink or expansion) breaking the global SO(N, 3N) symmetry.

PACS numbers:

I. DECOUPLING WITH FEW
ANTICOMMUTING VARIABLES

I’ve used the Hubbard–Stratonovich transformation
for decoupling of N fields has the form

eiabc =

∫
dξ1dη1

2π
eiξ1a−iξ1η1−0|ξ1|

×
∫
dξ2dη2

2π
eiξ2b−iξ2η2−0|ξ2|

×
∫
dξ3dη3

2π
eiξ3c−iξ3η3−0|ξ3|eiη1η2η3

and N2 pairs of variables ξjkηjk were taken to decouple
N products of N terms in Eq.(11).

Assume now that the a, ξ1, η1 and b, ξ2, η2 are all anti-
commuting variables. We get

eiabc =

∫
dη1

2π

∫
dη2

2π
i(a− η1)i(b− η2)

×
∫
dξ3dη3

2π
eiξ3c−iξ3η3−0|ξ3|eiη1η2η3

next step

eiabc = i2
∫
dξ3dη3

2π
eiξ3c−iξ3η3−0|ξ3|

∫
dη1

2π

∫
dη2

2π

× (1 + iη1η2η3)(ab− η1b− η2a+ η1η2)

= i2
∫
dξ3dη3

2π
eiξ3c−iξ3η3−0|ξ3| 1

(2π)2
eiη3ab

So the right formula is

eiabc =

∫
dξ1dη1

i
eiξ1a−iξ1η1−0|ξ1|

×
∫
dξ2dη2

i
eiξ2b−iξ2η2−0|ξ2|

×
∫
dξ3dη3

2π
eiξ3c−iξ3η3−0|ξ3|eiη1η2η3

where c, ξ3, η3 are commuting and the rest are anticom-
muting varaibles.

Let me look on tracing of action in little simplified case
of zero v; The first step before integration over super–
spinors ψ is to change the summation order in Eq.(12):

Shs = Sξη + Sξψ (1)

Sξη =

N∑
k=1

N∏
j=1

ηjk −
N∑

j,k=1

ξjkηjk (2)

Sξψ =

N∑
j=1

∫
d4xψ†jγ

0

{j−1∑
k=1

ξjkγ
FIVE

+ ξjjγ
µi∂µ +

N∑
k=j+1

ξjk

}
ψj (3)

The integration over ψ†ψ produce the superdeterminant

eiSξ ≡
∫
dψ†dψeiSξψ (4)

=
∏
jp

SDet

{
j−1∑
k=1

γ0γFIVEξjk

+ ξjjγ
0γµpµ +

N∑
k=j+1

γ0ξjk

}

where left–left and right–right are made from commuting
variables and left-right and right-left are meade from an-
ticommuting variables. The explicit from of the matrix
in brackets for given momentum is

(p0 + pz)ξjj Aj> −Aj<
(p0 + pz)ξjj −Aj> −Aj<

Aj> +Aj< (p0 − pz)ξjj
−Aj> +Aj< (p0 − pz)ξjj

The anticommuting channels are 2nd and 3rd rows and
columns. Let’s exchange 1st and 3rd row-columns to get
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anticommuting channels in right place:

(p0 − pz)ξjj Aj> +Aj<
(p0 + pz)ξjj −Aj> −Aj<

Aj> −Aj< (p0 + pz)ξjj
−Aj> +Aj< (p0 − pz)ξjj

So the Efetov’s text book formula gives

Sdet

{}
=

[
p0 + pz
p0 − pz

− 2
Aj>Aj<

(p0 − pz)2ξ2
jj

]

×

[
p0 − pz
p0 + pz

− 2
Aj>Aj<

(p0 + pz)2ξ2
jj

]

= 1− 4ξ−2
jj

Aj>Aj<
p2

0 − p2
z

(5)

which is the result of all cancellations in the superdeter-
minant. After all cancellations the relevant part of the
action is

iSξ = −4
∑
pj

ξ−2
jj

Aj>Aj<
p2

0 − p2
z

Let me rewrite it as

iSξ = −i2
∑
j

χj
∑

k′>j>k

ξjkξjk′

and the remaining part of action is

Sξη =

N∑
k=1

N∏
j=1

ηjk −
N∑

j,k=1

ξjkηjk

Do it by hands, then search for matrix inversion.∫
dξ1
i

[1− iχ(ξ1 + ξ2)(ξ4 + ξ5)](1− iξ1η1)

= −η1 − χ(1− iξ2η1)(ξ4 + ξ5)

next one∫
dξ2
i

[−η1 − χ(1− iξ2η1)(ξ4 + ξ5)](1− iξ2η2)

= −[−η1η2 − χη2(ξ4 + ξ5)]− χ(−η1)(ξ4 + ξ5)

= η1η2 + χ(η1 + η2)(ξ4 + ξ5)

Let’s me do it otherwise

ξ1(ξ3 + ξ4 + ξ5 + ξ6 + ξ7)

→ 1

ii
(η4η5η6η7 + η3η5η6η7 + . . .)

II. CONFORMALLY FLAT METRIC FOR
EINSTEIN-MAXWELL EQUATION

The conformally flat metric is chosen as

gµν = e−uηµν

The Ricci tensor is

Rµν = u,µν −
1

2
u,µu,ν +

1

2
ηµνη

αβ(u,αβ + u,αu,β)

and the factor R is

R = gµν(3u,µν +
3

2
u,µu,ν)

The action for Einstein-Maxwell equation is

S =

∫
d4x
√
g

[
R

4π2k
+ gµνφ,µφ,ν

]

III. NEW WAY

Let’s look for the Einstein equation solution in the form

gjµ′µ′ = δjj′g
(0)
µµ′v

2
j (tj)

The Ricci curvature becomes

R = −6
∑ v̈j

v3
j

and the left side of the Einstein equation in mixed indexes

−
v̇2
j

v4
j

− v̈j
v3
j

−R/2

IV. THE CONCEPT

The invariance upon Lorenz rotations of SO(N, 3N)
fields (mainly N = 1) is the starting point of all quantum
field theories. The Lorenz invariance was challenged in
many recent publications[1]; however it cannot be easily
broken. The space metrics tensor (same as the gravita-
tional field) can get the quantum observation value at
the ground state, but this would mean that the space
is curved. The Lorenz invariance will be preserved; just
need to be modified for the curved space.

In few recent papers the Lorenz invariance is defined
as “broken” if the light cone in the high symmetry state
is broken to few small light cones in the low symmetry
state. This typically occurs in Finsler geometries, and
some other cases.[2–4]

This paper deals with relatively simple example of
SO(N, 3N) to SO(1, 3) symmetry lowering. Here the big
light cone get broken to small light cones∑

jµ

pµj pjµ = 0 → ∀j :
∑
µ

pµj pjµ = 0 (6)

where j = 1 . . . N counts SO(1, 3) subspaces embedded
into SO(N, 3N) and µ = 0 . . . 3 counts axises of SO(1, 3).

The study of the SO(N, 3N) field theory is motivated
by the possibility of the continuous particle exchange[5],
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it becomes the regular exchange matrix once the sym-
metry is lowered down to SO(1, 3). For the SO(N, 3N)
Lagrangian we will need the 22N dimensional spinor field

ψNα (x) and the symmetric traceless tensor field hµ
′

jµj′ .

In order to break the SO(N, 3N) symmetry the quan-
tum field h should get the observation value in each of N
embedded SO(1, 3) subspaces:

〈|hµjµj |〉 = vj , Tr 〈|h |〉 = 4
∑

vj = 0 . (7)

The values vj will describe the shrink vj > 0 or expansion
vj < 0 of j-th subspace; the metrics tensor for each sub-
space is gjj = diag(1 + vj ,−1− vj ,−1− vj ,−1− vj), and√
−det(gjj) = (1 + vj)

2. Once each of N subspaces get
its own scale, the SO(N, 3N) symmetry becomes broken.
However the SO(1, 3) symmetry with-in each sub-space
is preserved.

Strictly speaking we should write down the Einstein–
Hilbert action for the field h.[6, 7] However we are looking
for coordinate independent solutions; these solutions are
either uniform shrinks or expansions. In any case the
space curvature is zero, and the Lagrangian written in
terms of the Ricci tensor will not describe the symmetry
lowering.

In the next section the SO(N, 3N) invariant La-
grangian with the coordinate independent space met-
rics is explicitly written down; the metrics fields h in-
teracts with the unsymmetrized energy–momentum ten-
sor. Then we assume that the symmetry is broken in
the low symmetry state; substitute the low symmetry
wave function; decouple all fields by N -times repeated
Hubbard–Stratonovich transformation; integrate out the
superspinors and calculate the superdeterminants[8]; use
the method of steepest descent and finally arrive to the
set of non-linear algebraic equations.

In the low-symmetry state energy of spinor field can
be non-uniformly distributed between subspaces and this
should be accounted by the chemical potential and the
temperature. However, the accounting of the non-zero
temperature is postponed. There is long discussion in
the literature if the supersymmetry can be preserved at
non-zero temperature.[9]

Overall I was not able to find solution where some of
subspaces get significant scale shrink or expansion due to
condensation of the spinor energy. So the paper summa-
rizes all done so far calculations.

V. THE HIGH AND LOW SYMMETRY
ACTIONS.

The flat metrics h should be accounted directly in the
action in a way similar to the random matrix theory and
large N expansion methods in modern field theories

S = F (
1

2
Trh2) +

∫
d4Nx

√
−gLN , (8)

where g = det(gjµj′µ′) and the SO(N, 3N) invariant
Lagrangian[5] is

LN = i
∑

ψ†NγZEROγαj ε
µ
jαj′∂j′µψ

N (9)

where εµα is the vierbein, and refer[5] for the definition of
γ-matrices. Last term is the chemical potential;

The branching rules for spinor and tensor fields upon
SO(1, 3) → SO(N, 3N) embedding are simple: the
spinor becomes the direct product of spinors; the ten-
sor becomes sum of traceless symmetric tensors, sum of
products of vectors and a scalar. We pick up only rele-
vant fields:

hµ
′

jµj′ = vjδjj′δ
µ′

µ ,
∑

vj = 0 (10)

LN = T
∑
jµ

j−1∏
k=1

ψ†kγ
0ψk(1 + vk)2

× ψ†jγ
0γµi∂µψj(1 + vj)

3/2

×
N∏

k=j+1

ψ†kγ
0γFIVEψk(1 + vk)2 , (11)

where ψ is the SO(1, 3) super–spinor, only left com-

ponents anticommutes.[5] The chosen form of hµ
′

jµj′ de-
scribes the uniform compression vj < 0 or expansion
vj > 0 of each of j = 1 . . . N subspaces; the vierbein

factors are just εµjαj′ = δjj′δ
µ
α(1 + vj)

−1/2.

The righ hand side of Eq.(11) contains product of N
spinors so the N -times Hubbard–Stratonovich transfor-
mation is required in order to decouple these fields. The
result is

Shs =

N∑
j=1

[
j−1∑
k=1

ξkj(1 + vk)2

∫
d4xψ†kγ

0ψk

+ ξjj(1 + vj)
3/2

∫
d4xψ†jγ

0γµi∂µψj

+

N∑
k=j+1

ξkj(1 + vk)2

∫
d4xψ†kγ

0γFIVEψk

−
N∑
k=1

ξkjηkj +

N∏
k=1

ηkj

]
(12)

where we used 2N2 variables in order to decouple all the
wave function products in the Lagrangian Eq.(11)

ei
∫
d4NxLN =

∫ ∏
jk

dξjkdηjk
2π

eiShs . (13)

Just for reference the Hubbard–Stratonovich transforma-
tion for decoupling of N fields has the form

eiabc =

∫
dξ1dη1

2π
eiξ1a−iξ1η1−0|ξ1|

×
∫
dξ2dη2

2π
eiξ2b−iξ2η2−0|ξ2|

×
∫
dξ3dη3

2π
eiξ3c−iξ3η3−0|ξ3|eiη1η2η3
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and N2 pairs of variables ξjkηjk were taken to decouple
N products of N terms in Eq.(11).

VI. CALCULATION OF THE
SUPERDETERMINANTS

The first step before integration over super–spinors ψ
is to change the summation order in Eq.(12):

Shs = Sξη + Sξψ + Sµ (14)

Sξη =

N∑
k=1

N∏
j=1

ηjk −
N∑

j,k=1

ξjkηjk (15)

Sξψ =

N∑
j=1

∫
d4x(1 + vj)

2ψ†jγ
0

{j−1∑
k=1

ξjkγ
FIVE

+
ξjj√
1 + vj

γµi∂µ +

N∑
k=j+1

ξjk

}
ψj (16)

Sµ = −
N∑
j=1

µj

∫
d4x(1 + vj)

2ψ†jψj (17)

where the chemical potential µj per subspace was intro-
duced to control the number of particles. Otherwise there
is no way to break the symmetry, we will have exactly
one particle per subspace.

The integration over ψ†ψ produce the superdetermi-
nant

eiSvξ ≡
∫
dψ†dψeiSξψ+iSµ (18)

=
∏
jp

SDet

{
(1 + vj)

2

[
−µj +

j−1∑
k=1

γ0γFIVEξjk

+
ξjj√
1 + vj

γ0γµpµ +

N∑
k=j+1

γ0ξjk

]}−1

where left–left and right–right blocks should be taken as
commuting variables and left-right and right-left blocks
as anticommuting. The explicit from of the matrix in
brackets for given momentum p′ = pξjj(1 + vj)

−1/2 is

p′0 − µj + p′z Aj> −Aj<
p′0 − µj + p′z −Aj> −Aj<

Aj> +Aj< p′0 − µj − p′z
−Aj> +Aj< p′0 − µj − p′z

The anticommuting channels are 2nd and 3rd rows and
columns. For the superdeterminant we stay with follow-
ing matrix, where the anticommuting channels are in the

bottom right:

Sdet

{}
=

[
p′0 − µj + p′z
p′0 − µj − p′z

−
A2
j> −A2

j<

(p′0 − µj − p′z)2

]

×

[
p′0 − µj − p′z
p′0 − µj + p′z

−
A2
j> −A2

j<

(p′0 − µj + p′z)
2

]

=

[
1−

A2
j> −A2

j<

(p′0 − µj)2 − (p′z)
2

]2

(19)

which is the result of all cancellations in the superdeter-
minant.

In the next section we will use the steepest descent
method for the calculation of extremum of the action. In
the vicinity of the extremum

iSvξ = −2
∑
jp

(1 + vj)
2

ξ4
jj

ln

[
1−

A2
j> −A2

j<

(p0 − µj)2 − ~p2

]

≈ 2
∑
jp

(1 + vj)
2

ξ4
jj

(A2
j> −A2

j<)

(p0 − µj)2 − ~p2
(20)

Aj< =

j−1∑
k=1

ξjk Aj> =

N∑
k=j+1

ξjk (21)

where I’ve rescaled p′ = pξjj(1+vj)
−1/2 → p and pz → ~p.

We regularize the pole by p2 → p2 + i0, then the sum
over momenta gives

iSvξ = 2iV
∑
j

µ2
j (1 + vj)

2
A2
j< −A2

j>

ξ4
jj

(22)

and V is the constant proportional to the system volume.
The factor (1 + vj)

2 describes the volume scaling with
space shrink/expansion.

Collecting back together all the terms contributing to
the action in the low symmetry state we get

S = F (
∑

v2
j ) +

N∑
k=1

N∏
j=1

ηjk −
N∑

j,k=1

ξjkηjk

+ 2V
∑
j

µ2
j (1 + vj)

2
A2
j< −A2

j>

ξ4
jj

(23)

and make the following variables change

ξjk → ξjkξ
2
jj (24a)

ηjk → ηjk/ξ
2
jj (24b)

ηjj → ηjjξ
2N−2
jj (24c)

ξ2N−1
jj → ξjj (24d)

and the action becomes

S = F (
∑

v2
j ) +

N∑
k=1

N∏
j=1

ηjk −
∑
j,k

ξjkηjk

+ 2V
∑
j

µ2
j (1 + vj)

2
(
A2
j< −A2

j>

)
(25)
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and unexpectedly all terms except F (
∑
v2
j ) collapse. In-

deed, ξjj can be integrated out, leading to ηjj = 0; con-
sequently ηjk can be integrated out leading to ξjk = 0
so ∫

dξdηeiS = eiF (
∑
v2j ) (26)

Therefore the ln in Eq. (20) must be preserved.

VII. THE STEEPEST DESCENT METHOD

There are two main approaches to find the suddle point
of the action preserved in the form

S = F (
∑

v2
j ) +

N∑
k=1

N∏
j=1

ηjk −
N∑

j,k=1

ξjkηjk

+ 2i
∑
jp

(1 + vj)
2

ξ4
jj

ln

[
1−

A2
j> −A2

j<

(p0 − µj)2 − ~p2 + i0

]
(27)

The simple one is to adopt the ln expansion and stay
with

∂

∂vj
F (
∑

v2
j ) = 0 (28)

that definitely has solution vj = 0 and might have other
solutions vj = ±v 6= 0. If the second minimum exist,
then the symmetry can be broken spontaneously if some
of vj = 0 and some other vj = ±v.

The more complicated approach is to find the true sad-
dle point of entire system of metrics field h and the mate-
rial field ψ. Taking derivatives with respect to vj , ξjk, ηjk
the extremum location is at

ηjk = 2iV
∑
p

µ2
j (1 + vj)

2

ξ4
jj

{
Aj< k < j
−Aj> k > j

× 1

(p0 − µj)2 − ~p2 −A2
j> +A2

j< + i0
(29a)

ηjj = −8iV
∑
p

µ2
j (1 + vj)

2

ξ5
jj

ln

[
· · ·
]

(29b)

ξjk =
∏
j′ 6=j

ηj′k (29c)

F ′vj = −4iV
∑
p

µ2
j (1 + vj)

ξ4
jj

ln

[
· · ·
]

(29d)

that is power N non-linear equation with 2N2 +N vari-
ables.

VIII. CONCLUSIONS

The solution of the saddle point equations is currently
beyond my bandwidth. I should try the renorm-group
analysis to see if the accumulation of the energy in of
the sub-spaces can come with scale shrink or expansion
which in turn will drive more energy to come into this
subspace.
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