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Abstract

The exchange between N quantum fields is investigated by raising symmetry
from SO(1; 3) to SO(N ; 3N), rotating 4N dimensional space, and lowering the
symmetry back to SO(1; 3). We track the exchange matrix for SO(1; 3) spinors
(expected to be anticommuting) and products of even number of spinors (ex-
pected to be tensors and, therefore, commuting). For spinors, the theory turns
out to be supersymmetric. Vector fields are commuting. The transformation
takes a scalar field to a pseudoscalar and, therefore, commutation rules for
scalars cannot be computed using this method.

1. Introduction

The scientific interest in and debate over the foundation of the spin–statistics
theorem[1] have continued since the theorems publication.[2] This theorem is
required for understanding the stability of matter,[3] periodic filling of atomic
orbitals, operation of lasers, and several other phenomena. The theorem states
that an ensemble of several like particles will belong to the symmetrical class if
the particles have integer spin, and it will belong to the antisymmetrical class
if the particles have half-integer spin; a mixture of all symmetry classes is never
realized in nature.[4]

The original proof of the theorem is based on the CPT-invariance of energy,
charge, and Green’s function. It makes use of the symmetry between particles
and antiparticles.[5] However, one can argue that it should be possible to prove
the spin–statistics theorem within elementary quantum mechanics.[6] The idea
is to replace the particle exchange by rotation through additional degrees of
freedom. The rotation of the wave function is a smooth operation that should
provide unambiguous information about its sign.[7, 8, 9, 10, 11, 12, 13]

The geometrical arguments in favor of the spin–statistic theorem in most
cases are formalizations of the belt trick.[14] There are a few difficulties in re-
alizing this approach. The smooth exchange rotations of quantum fields suffer
from singularities that occur in the construction of space translations.[7] The
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exchange is typically done through the SU(2N) group; unfortunately, this pro-
duces unphysical states.[15]

The present paper makes use of a four-step procedure, which is outlined
below, to connect the exchange of SO(1; 3) fields and rotations in SO(N ; 3N)
space. We start with the example of N = 2 and then discuss a generalization
to arbitrary N .
1. Embed the SO(1; 3) fields into one SO(2; 6) field.
2. Calculate the transformation of the SO(2; 6) field upon rotation exchanging
embedded subspaces.
3. Branch the SO(2; 6) field back to the SO(1; 3) fields.
4. The transformation of the SO(2; 6) field becomes an exchange of the SO(1; 3)
fields.
The group theory structure of the above procedure is very different from that
used in the past. We do not use any space translation groups and do not follow
the belt trick. Instead, we go straight to higher dimensions to avoid difficulties
with parasitic states and singularities.

Commutation rules can be computed between fields of the same symmetry
such as between spinor and spinor fields or between vector and vector fields.
For this reason, not all SO(2; 6) fields are suitable for this analysis. We will
use SO(2; 6) bispinor, which branches to a product of SO(1; 3) bispinors. Com-
mutation rules of vector fields will be computed from SO(2; 6) adjoint field,
which branches to a product of vectors. Commutation rules between scalar
fields and between adjoint fields will be computed by making use of SO(2; 6)
70-dimensional field, which branches to products of SO(1; 3) scalars, adjoints
and vectors. Unfortunately, SO(2; 6) scalar field branches to a product of a
SO(1; 3) scalar and a pseudoscalar, and cannot be used for the calculation of
commutation rules.

This work uses the unified approach, whereby all SO(2; 6) tensors are ex-
pressed through SO(2; 6) bispinors. The rotations of all tensors are then ob-
tained from the transformation of bispinors. We keep all products of bispinor
quantum fields normally-ordered to avoid ambiguity upon symmetry raising and
lowering. The normal ordering is not shown explicitly through the calculations,
but it will be always assumed.

When this work began, the author anticipated obtaining the spin–statistics
theorem, that is, commutation of integer spin fields and anticommutation of
half-integer fields. The calculations confirm the commutation of vector fields in
accordance with the spin–statistics theorem. The result is surprising for spinor
fields: spinor fields are found to be supersymmetric, with only left spinors anti-
commuting Eq. 11. This leads to the paradox mentioned in the Landau course
[16, §26]. The products of an even number of spinors form vectors and tensors.
Supersymmetric spinor fields would then lead to supersymmetric tensors.

This paradox is resolved by the following arguments. Vector fields are made
by pairing anticommuting fields with anticommuting fields ψ†L~σψL and com-

muting fields with commuting fields ψ†R~σψR, and therefore, they are bosons (no
paradox). Scalar fields are made by pairing anticommuting fields with commut-
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ing ψ†LψR, and therefore they are candidates for anticommuting spin-zero fields.
Calculation shows that the exchange of scalar fields changes their symmetries to
pseudoscalars, and therefore, they are neither commuting nor anticommuting.

However, the permutation of scalar field should preserve their symmetry for
two reasons. The scalar product of two vector fields is a scalar field too and
it must be commuting by virtue of commutativity of vectors. The square of
a scalar field is also a scalar field and therefore it must be commuting in a
consistent theory.

The paradox number two is resolved by the following reasoning. The method
of embedding of SO(1; 3) into SO(N ; 3N) requires SO(N ; 3N) to be the original
world symmetry, spontaneously broken down to SO(1; 3). Here N is the total
number of particles in the SO(1; 3) world and therefore the SO(N ; 3N) world
has only one particle. In this world there are no powers of ψ(x); it possible to
form scalar s(x) = ψ†(x)ψ(x) but there is no way to form square of scalar field.
Upon the symmetry lowering to the SO(1; 3) world the product of two scalars
is allowed s(x)s(x′) but the square of a scalar s(x)2 is not allowed. Same is true
for vectors; the scalar product of two vectors is allowed φµ(x)φµ(x′) but the
square of a vector φµ(x)φµ(x) is not allowed. For this reason the higher rank
tensors are neither commuting nor anticommuting. Only spinors and vectors
appear to have valid commutation rules.

The exchange rotation between two subspaces of SO(N ; 3N) is shown below
in a few steps. We assume that one subspace has axes xµ1 and the other subspace

has axes xµ2 , where µj = 0, 1, 2, 3. The first step is a π/2 rotation R̂π/2 in the
four planes xµ1x

µ
2 . This takes xµ1 → xµ2 , xµ2 → −x

µ
1 , etc. In other words, for an

SO(2; 6) scalar one has

R̂π/2 : s(x1, x2)→ s(x2,−x1) (1)

Then we will need Î2 which inverts the xµ1 subspace such that xµ1 → −x
µ
1 , etc:

Î2 : s(x2,−x1)→ s(x2, x1) . (2)

Finally, the exchange rotation is defined as

Ê = Î2R̂π/2 : s(x1, x2)→ s(x2, x1) , Ê2 = 1 (3)

The exchange of subspaces is not a smooth transformation, because it includes
inversion in one of the subspaces. However, all the elements are unambiguously
defined, and therefore, the exchange matrix is expected to be well defined.

Section 2.1 defines bispinor fields for SO(1; 3) and SO(2; 6) and presents
the results of the exchange rotation for bispinors. All γ-matrix related algebra,
rotation matrices, and certain other calculations are moved to next Section 2.2.
The following sections (Sec. 2.3 and 2.4) repeat the procedure of Sec. 2.1 for
integer spin fields. Branching rules for tensors are calculated in Sec. 2.5. The
N -dimensional generalization of the theory is discussed shortly in Sec. 2.6, after
which the work is summarized in Sec. 3.
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2. Theory/Calculation

2.1. The exchange rotation of bispinors

We start with half-integer spin fields because their embedding in a higher-
dimensional group is relatively easy. For the SO(1; 3) and SO(2; 6) bispinors
and their conjugates, we obtain

[1, 0] = ψL(x), ψ†R(x)

[0, 1] = ψR(x), ψ†L(x)

[0, 0, 1, 0] = ψL(x, x′), ψ†L(x, x′)

[0, 0, 0, 1] = ψR(x, x′), ψ†R(x, x′) , (4)

where L indicates left spinors and R indicates right spinors. The highest Dynkin
weights in square brackets denote the D(2) and D(4) left and right spinors.[17]
We will not use ψ̄ notations in this work.

The embedding (branching) rules are

ψL(x, x′)↔ ψL(x)⊗ ψR(x′)⊕ ψR(x)⊗ ψL(x′)

ψR(x, x′)↔ ψL(x)⊗ ψL(x′)⊕ ψR(x)⊗ ψR(x′) , (5)

and similar rules apply for conjugated fields. Bispinors for both groups are
defined as

ψ(x) = ψL(x)⊕ ψR(x) (6)

ψ(x, x′) = ψL(x, x′)⊕ ψR(x, x′) . (7)

The exchange rotation transforms the SO(2; 6) bispinor ψ(x, x′) as

ψ(x, x′)→ Êψ(x′, x) . (8)

We postulate in this work that the matrix Ê is preserved when the symmetry
lowered from SO(2; 6) to SO(1; 3). It allows the calculation of the exchange of
SO(1; 3) bispinors

ψ(x)ψ(x′)→ Êψ(x′)ψ(x) . (9)

The explicit calculation in 2.2 gives the action of the exchange rotation

ψLL(x, x′)
ψLR(x, x′)
ψRL(x, x′)
ψRR(x, x′)

→

−ψLL(x′, x)
ψRL(x′, x)
ψLR(x′, x)
ψRR(x′, x)

(10)

and after lowering the symmetry we obtain

ψL(x)ψL(x′)
ψL(x)ψR(x′)
ψR(x)ψL(x′)
ψR(x)ψR(x′)

→

−ψL(x′)ψL(x)
ψR(x′)ψL(x)
ψL(x′)ψR(x)
ψR(x′)ψR(x)

(11)

meaning that left spinors anticommute, and all other commute. The same rules
apply for conjugated fields because the exchange matrix is real.
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2.2. Exchange of 4-dimensional subspaces inside 4N -dimensions
The theory starts with ψN and ψ†N being field operators in SO(N ; 3N)

space; they transform as 22N component bispinors of the D2N Lie group

ψN = ψNL ⊕ ψNR ∼
(

[0, 0, . . . , 1, 0]
[0, 0, . . . , 0, 1]

)
, (12)

and the same structure holds for ψ†N . Here the highest Dynkin weights in
square brackets denote the D(2N) left (also marked by the subscript “L”) and
right spinors (also marked by the subscript “R”).[17]

The transformations of ψN upon space rotation are given in terms of the set
of 4N anticommuting γ-matrices. The dimension of γ-matrices is 22N × 22N .
In all equations in this work we assume that the dimension of the γ-matrices
matches the dimension of the nearby ψN field. This allows to omit N in the
notation of γ-matrices.

Here, 4N axes are counted as groups of four (sub-spaces). The index j counts
groups, and the index µ counts axes within each group. Within each group, we
use the space metrics (1,−1,−1,−1). Thus, the explicit way of writing the
γ-matrices is

γ0j = 1⊗ . . .⊗ 1︸ ︷︷ ︸
2(j−1)

⊗σ1 ⊗ σ3 . . .⊗ σ3︸ ︷︷ ︸
2(N−j)+1

(13a)

γ3j = i 1⊗ . . .⊗ 1︸ ︷︷ ︸
2(j−1)

⊗σ2 ⊗ σ3 . . .⊗ σ3︸ ︷︷ ︸
2(N−j)+1

(13b)

γ2j = i 1⊗ . . .⊗ 1︸ ︷︷ ︸
2(j−1)+1

⊗σ1 ⊗ σ3 . . .⊗ σ3︸ ︷︷ ︸
2(N−j)

(13c)

γ1j = −i 1⊗ . . .⊗ 1︸ ︷︷ ︸
2(j−1)+1

⊗σ2 ⊗ σ3 . . .⊗ σ3︸ ︷︷ ︸
2(N−j)

(13d)

and a few auxiliary matrices are

γFIVE

j = −iγ0j γ1j γ2j γ3j (13e)

γFIVE =
∏
j

γFIVE

j = σ3 ⊗ . . .⊗ σ3︸ ︷︷ ︸
2N

(13f)

γZERO = γ0N · · · γ01(γFIVE)N−1 (13g)

γZEROU−1 = U†γZERO .

where σ1, σ2, σ3 are the Pauli matrices. As in the case of N = 1, the matrices
γ0j , γ

1
j , γ

3
j are real, and the matrices γ2j are imaginary. The space rotation matrix

U is introduced below. For N = 1, we will omit the subscript indexes.
The space rotation in the plane (jµ, j′µ′) by angle θ is equivalent to the

linear transformation of the 4N coordinates x → Rx and 22N components of
the wave function

ψN (x) → UψN (R−1x) , U = e
(θ/2)γµj γ

µ′

j′ (14a)

ψ†N (x) → ψ†N (R−1x)U† . (14b)
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The action of rotation operator R can be verified by

Uγµj xjµU
−1 = γµj (Rx)jµ . (14c)

Finally, with the definition Eq. (13g) one obtains the 4N “Lorenz”-invariant
scalar field

s(x1 . . . xN ) = ψ†N (x1 . . . xN )γZEROψN (x1 . . . xN ) (14d)

In other words s(x1 . . . xN ) is invariant upon rotations in 4N -dimensional space.

There is a transformation that we call the i↔ j subspace exchange

∀µ Eijγµi Eij = γµj , Eijγ
µ
j Eij = γµi (15)

and our purpose is to calculate the field transformation by this subspace ex-
change

ψN ′(. . . xi . . . xj . . .) = Eijψ
N (. . . xj . . . xi . . .) . (16)

It can be derived as sequence of π/2 rotations and four-inversion

Eij =
1

4
(1 + γ0i γ

0
j )(1− γ1i γ1j )(1− γ2i γ2j )(1− γ3i γ3j )γFIVE

i (17)

where

e±(π/4)γ
µ
i γ

µ
j =

1± γµi γ
µ
j√

2
, (18)

and the sign of rotation in plane (i0, j0) is opposite to that of the rotations in
planes (i1, j1) . . . (i3, j3). This can be verified by computing Eij for SO(4N).

The symbolic calculation was made by utilizing the cloud version of SAGE.
The result in the form of Eq. (16) is

Eij =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(19)
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acting on the wave function as

Eij



ψ...↑R...↑R...
ψ...↑R...↓L...
ψ...↑R...↑L...
ψ...↑R...↓R...
ψ...↓L...↑R...
ψ...↓L...↓L...
ψ...↓L...↑L...
ψ...↓L...↓R...
ψ...↑L...↑R...
ψ...↑L...↓L...
ψ...↑L...↑L...
ψ...↑L...↓R...
ψ...↓R...↑R...
ψ...↓R...↓L...
ψ...↓R...↑L...
ψ...↓R...↓R...



=



ψ...↑R...↑R...
ψ...↓L...↑R...
ψ...↑L...↑R...
ψ...↓R...↑R...
ψ...↑R...↓L...
−ψ...↓L...↓L...
−ψ...↑L...↓L...
ψ...↓R...↓L...
ψ...↑R...↑L...
−ψ...↓L...↑L...
−ψ...↑L...↑L...
ψ...↓R...↑L...
ψ...↑R...↓R...
ψ...↓L...↓R...
ψ...↑L...↓R...
ψ...↓R...↓R...



(20)

where we show only relevant channels. The rest of the matrix is diagonal. One
can verify Eq. (15) explicitly or by making use of SAGE. The exchange matrix
Eij does not contain only −1. After symmetry lowering of ψN to products of
ψ, certain components will commute while others will anticommute.

The next task is to index the components of the SO(N ; 3N) fields ψNL , ψ
N
R

according to the representations of the embedded group SO(1; 3)⊕· · ·⊕SO(1; 3).
We will prove that the exchange operator E has negative eigenvalues for the
exchange of the left fields only (as shown above). The spinor ψN has 22N

components; we will mark them by N handedness indexes L or R and by N
spin indexes ↑ or ↓.

The common definition of the left and right spinors is derived from their
sign upon the 4N inversion; in spinor representation the γFIVE is the operator
of the 4N inversion, as ∀jµ : γFIVEγµj γ

FIVE = −γµj . Then the components of
the spinor Eq.(12) are selected by

ψNL =
1− γFIVE

j

2
ψN , ψNR =

1 + γFIVE
j

2
ψN , (21)

and ψNL will change its sign upon 4N inversion, while ψNR will preserve tits sign.
For every N , we can extract the index (L or R), which belongs to the j-th

subspace by making use of γFIVE
j – the operator of four-inversion of the j-th

subspace

ψ...L... =
1− γFIVE

j

2
ψN (22a)

ψ...R... =
1 + γFIVE

j

2
ψN . (22b)
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For example, the component of ψ branched to the product of only the left fields
is

ψL...L =

 N∏
j=1

1− γFIVE
j

2

ψN . (22c)

The N spin indexes can be extracted according to the sign of the generator of
rotation in the (j1, j2) plane:

ψ...↑... =
1 + iγ1j γ

2
j

2
ψN (22d)

ψ...↓... =
1− iγ1j γ2j

2
ψN . (22e)

This labeling scheme allows us to write explicitly the action of the exchange
operator in Eq. (17). Exactly the same equation holds for ψ†N .

2.3. Construction of tensors from spinors

For tensor fields, the generic embedding rules are slightly more involved. It
is convenient to calculate all rotations by making use of γ-matrices; therefore,
we will express the tensors in terms of bispinors. We will distinguish tensors and
pseudotensors by making use of the γ0 matrix in SO(1; 3) and γ01 in SO(2; 6).
If the transformations ψ → γ0ψ or ψ → γ01ψ change the sign of a tensor we will
call it a pseudotensor.

It should be noted that Section 2.2 defines γ-matrices for all SO(N ; 3N).
We omit N in the γ-matrix notation, assuming that the dimension of the γ-
matrices matches that of the spinor fields ψ in every equation. In particular,
the γ-matrices in Eq. (23) are 4× 4 and in Eq. (27) they are 16× 16, acting on
both subspaces of SO(2; 6). Scalar SO(1; 3) fields are

[0, 0] = s(x) = ψ†(x)γZEROψ(x) ,

[0, 0]p = sp(x) = ψ†(x)γZEROγFIVEψ(x) , (23)

where the subscript p means pseudoscalar, and will be used to indicate pseu-
dovectors as well. The vector fields are given by

[1, 1] = φµ(x) = ψ†(x)γZEROγµψ(x) , (24)

[1, 1]p = φµp (x) = ψ†(x)γZEROγFIVEγµψ(x) .

The adjoint representation is also the tensor field constructed from two spinors

[2, 0]⊕ [0, 2] = σµν(x) = ψ†(x)γZEROγµγνψ(x) ,

σ̃µν(x) = ψ†(x)γZEROγFIVEγµγνψ(x) (25)

= −(i/2)εµνµ
′ν′
σµ′ν′(x) ,

where εµνµ
′ν′

is given by Eq. (46). Because the field σµν(x) is odd with respect
to permutations of indexes µ, ν, the field σ̃µν(x) is the same field with different
indexing of components.
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Overall, we decompose the product of bispinors to a sum of five tensor fields
4·4 = 1+1p+4+4p+6. The metric tensor (e.g. gravitational field) [2, 2] = hµν(x)
appears in the decomposition of products of four bispinors.

[2, 2] = [2, 0]⊗ [0, 2] (26)

h(x) = (σµµ
′

1 (x)− σ̃µµ
′

1 (x))(σνν
′

2 (x) + σ̃νν
′

2 (x))

However decomposition of the field into product of four spinors is forbidden be-
cause the high symmetry state SO(N ; 3N) can have no more than one particle.

The index µ for SO(1; 3) tensors ranges from 0 to 3; we will use same index
for SO(2; 6), together with an extra index j in the range from 1 to 2; it will
count the SO(2; 6) subspaces. The scalar SO(2; 6) field is

[0, 0, 0, 0] = s(x, x′) = ψ†(x, x′)γZEROψ(x, x′), (27)

because γ01 commutes with γZERO for all N . The SO(2; 6) pseudoscalar is there-
fore

[0, 0, 0, 0]p = sp(x, x
′) = ψ†(x, x′)γZEROγFIVEψ(x, x′). (28)

The vector fields are

[1, 0, 0, 0] = φµj (x, x′) = ψ†(x, x′)γZEROγµj ψ(x, x′) (29)

[1, 0, 0, 0]p = φµpj(x, x
′) = ψ†(x, x′)γZEROγFIVEγµj ψ(x, x′)

The adjoint representations (antisymmetric tensor) are

[0, 1, 0, 0] = σµµ
′

jj′ (x, x′)ψ†(x, x′)γZEROγµj γ
µ′

j′ ψ(x, x′),

[0, 1, 0, 0]p = σµµ
′

pjj′(x, x
′) (30)

= ψ†(x, x′)γZEROγFIVEγµj γ
µ′

j′ ψ(x, x′),

where µj 6= µ′j′. The products of the three γ-matrices give

[0, 0, 1, 1] = vµµ
′ν

jj′k (x, x′)

= ψ†(x, x′)γZEROγµj γ
µ′

j′ γ
ν
kψ(x, x′),

[0, 0, 1, 1]p = vµµ
′ν

pjj′k(x, x′) (31)

= ψ†(x, x′)γZEROγFIVEγµj γ
µ′

j′ γ
ν
kψ(x, x′).

where µj 6= µ′j′ 6= νk. The last field made from two representations is

[0, 0, 2, 0]⊕ [0, 0, 0, 2] = uµµ
′νν′

jj′kk′ (x, x′)

= ψ†(x, x′)γZEROγµj γ
µ′

j′ γ
ν
kγ

ν′

k′ψ(x, x′), (32)

Overall, we decompose the product of the SO(2; 6) bispinors to a sum of nine
tensor fields 16 · 16 = 1 + 1p + 8 + 8p + 28 + 28p + 56 + 56p + 70, where the
subscript p indicates a pseudotensor.
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2.4. The exchange rotation of tensors

The transformation of the SO(2; 6) tensor fields is computed by the action of
the operator Ê on the function ψ(x, x′). The operator Ê should be substituted
into Eqs. (28–32), followed by the rotation of the γ-matrices by Ê.

Before studying the exchange rotations of the SO(2; 6) tensors, let us summa-
rize all counts of degrees of freedom upon lowering the symmetry from SO(2; 6)
to SO(1; 3). The explicit calculation is shown in Section 2.5:

1→ 1p · 1 , 1p → 1 · 1p , (33a)

8→ 4p · 1p + 1p · 4 , 8p → 4 · 1 + 1 · 4p , (33b)

28→ 6 · 1 + 4p · 4p + 1p · 6 , (33c)

28p → 6 · 1p + 4 · 4 + 1 · 6 , (33d)

56→ 4 · 1p + 6 · 4 + 4p · 6 + 1p · 4p ,
56p → 4p · 1 + 6 · 4p + 4 · 6 + 1 · 4 , (33e)

70→ 1 · 1 + 4 · 4p + 6 · 6 + 4p · 4 + 1p · 1p . (33f)

The exchange between fields of the same symmetry is possible by rotation of
representations with 28 and 70 degrees of freedom.

Let us calculate the transformation of the 28-component adjoint representa-
tion, which contains a product of vectors. We will see symmetry change of some
representations upon exchange, and for comparison we puit first the transfor-
mation of the 1-component scalar field:

s(x, x′) → ψ(x′, x)ÊγZEROÊψ(x′, x). (34)

σµµ
′

12 (x, x′) → ψ(x′, x)ÊγZEROγµ1 γ
µ
2 Êψ(x′, x), (35)

Taking into account that in SO(2; 6)

γµ1 → Êγµ1 Ê = γµ2 , γµ2 → Êγµ2 Ê = γµ1

γFIVE → ÊγFIVEÊ = γFIVE

γZERO → ÊγZEROÊ = −γZERO (36)

we arrive at the exchange rotation matrix for SO(2; 6) adjoint and scalar

s(x, x′)

σµµ
′

11 (x, x′)

σµµ
′

22 (x, x′)

σµµ
′

12 (x, x′)

→

−s(x′, x)

−σµµ
′

22 (x′, x)

−σµµ
′

11 (x′, x)

−σµµ
′

21 (x′, x)

, (37)

and after lowering the symmetry we obtain

sp(x)s(x′)
σ̃µµ′(x)s(x′)

sp(x)σµµ
′
(x′)

φµp (x)φµ
′

p (x′)

→

−sp(x′)s(x)

−sp(x′)σµµ
′
(x)

−σ̃µµ′(x′)s(x)

φµ
′

p (x′)φµp (x)

(38)
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From this, we learn that pseudovector fields φµp (x) commute as expected. A
similar result is obtained from the rotation of the pseudoadjoint field

σµµ
′

p12 (x, x′) → −σµµ
′

p21 (x′, x) , (39)

φµ(x)φµ
′
(x′) → φµ

′
(x′)φµ(x) (40)

which confirms the commutation of vectors φµ(x).
The representation with 70 degrees of freedom is transformed as

uµµ
′νν′

1111 (x, x′)

uµµ
′νν′

1112 (x, x′)

uµµ
′νν′

1122 (x, x′)

uµµ
′νν′

1222 (x, x′)

uµµ
′νν′

2222 (x, x′)

→

−uµµ
′νν′

2222 (x′, x)

−uµµ
′νν′

2221 (x′, x)

−uµµ
′νν′

2211 (x′, x)

−uµµ
′νν′

2111 (x′, x)

−uµµ
′νν′

1111 (x′, x)

. (41)

The choice of indexes µνµ′ν′ is limited; they should be different if they belong to
the same subspace. Upon symmetry lowering, we obtain the following exchange
rules

sp(x)sp(x
′)

φpκ(x)φν
′
(x′)

σµµ
′
(x)σ̃νν

′
(x′)

φµ(x)φpκ′(x′)
s(x)s(x′)

→

−s(x′)s(x)

φν
′
(x′)φpκ(x)

−σνν′
(x′)σ̃µµ

′
(x)

φpκ′(x′)φµ(x)
−sp(x′)sp(x)

, (42)

where εµµ
′νκ = 1 and εκ

′µ′νν′
= 1 define a relationship between the indexes in

Eq. (42) and Eq. (41).
We see from Eqs. (38,42) that a scalar field becomes a pseudoscalar field

upon the exchange, a product of scalars becomes a product of pseudoscalars,
and therefore they neither commute nor anticommute. A similar problem occurs
for the exchange of tensors σµµ

′
; indexes of this field get shuffled σµµ

′ → σ̃µµ
′
,

which means that the components of the tensor σµµ
′

neither commute nor an-
ticommute.

2.5. Branching rules for SO(2; 6) tensors upon symmetry lowering to SO(1; 3)

We start the calculations with the decomposition of the bispinors ψ†(x, x′)→
ψ†(x) ⊗ ψ†(x′), which will match the decomposition of the γ-matrices. In this
work and particularly in this section, we will assume that all products (explicit
and implicit) of ψ operators are normally-ordered. This allows us to avoid
commutations between ψ† and ψ.

The decomposition of the products of γµj matrices is required to calculate
the branching rules of the SO(2; 6) tensors, and they are

γZERO

SO(2;6) =
(
γZERO

SO(1;3)γ
FIVE

SO(1;3)

)
⊗ γZERO

SO(1;3) (43a)

γFIVE

SO(2;6) = γFIVE

SO(1;3) ⊗ γFIVE

SO(1;3) (43b)

γµ1SO(2;6)
= γµSO(1;3) ⊗ γFIVE

SO(1;3) (43c)

γµ2SO(2;6)
= 1SO(1;3) ⊗ γµSO(1;3) . (43d)
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For clarity, we will write the decomposition of the matrices vertically. Branching
rules for scalar can be derived by making use of the following diagram

s(x, x′) ψ†(x, x′) γZERO ψ(x, x′)
sp(x) ψ†(x) γZEROγFIVE ψ(x)
s(x′) ψ†(x′) γZERO ψ(x′)

(44)

Every element in the first line and right hand side of the diagram is the direct
product of the corresponding elements from the second and third lines. The left
hand side of the diagram shows the branching rule

s(x, x′)→ sp(x)s(x′) , sp(x, x
′)→ s(x)sp(x

′) . (45)

We mentioned in introduction, the SO(2; 6) scalar field branches to a product
of a SO(1; 3) scalar and a pseudoscalar, and cannot be used for the calculation
of commutation rules.

We will calculate in detail some elements of 28- and 70-dimensional fields.
The calculations below require sets of four different indexes satisfying one of
following equations

γµγµ
′
γνγν

′
= iγFIVEεµµ

′νν′
, (46a)

γµγµ
′
γν = iγFIVEεµµ

′νκγκ , (46b)

γµγµ
′

= −(i/2)γFIVEεµµ
′λλ′

γλγλ′ . (46c)

Here, εµµ
′λλ′

is the totally antisymmetric four-index tensor. The branching of

the tensor fields σµµ
′

jj′ (x, x′) and σµµ
′

pjj′(x, x
′) depend on the combination of jj′

and must be carried out in three ways for 11, 22, and 12. For jj′ = 11 it is

σµµ
′

11 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

1 ψ(x, x′)

σ̃µµ
′
(x) ψ†(x) γZEROγFIVE γµ γµ

′
ψ(x)

s(x′) ψ†(x′) γZERO γFIVE γFIVE ψ(x′),

(47a)

for jj′ = 22

σµµ
′

22 (x, x′) ψ†(x, x′) γZERO γµ2 γµ
′

2 ψ(x, x′)
sp(x) ψ†(x) γZEROγFIVE ψ(x)

σµµ
′
(x′) ψ†(x′) γZERO γµ γµ

′
ψ(x′)

(47b)

The remaining terms have jj′ = 12, 21

σµµ
′

12 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

2 ψ(x, x′)
φµp (x) ψ†(x) γZEROγFIVE γµ ψ(x)

φµ
′

p (x′) ψ†(x′) γZERO γFIVE γµ
′

ψ(x′)

(47c)

The summary of the branching rules for all jj′ is

σµµ
′

11 (x, x′)→ σ̃µµ
′
(x)s(x′), σµµ

′

p11 (x, x′)→ σµµ
′
(x)sp(x

′), (48a)

σµµ
′

22 (x, x′)→ sp(x)σµµ
′
(x′), σµµ

′

p22 (x, x′)→ s(x)σ̃µµ
′
(x′), (48b)

σµµ
′

12 (x, x′)→ φµp (x)φµ
′

p (x′), σµµ
′

p12 (x, x′)→ φµ(x)φµ
′
(x′). (48c)

12



The branching for jj′ = 21 is the same as jj′ = 12, but with the opposite sign.
Counts of degrees of freedom are 28 = 6·1+4p·4p+1p·6 and 28p = 6·1p+4·4+1·6.

A similar classification of branching rules by number occurrences of 1 and 2

in the index jj′kk′ is valid for uµµ
′νν′

jj′kk′ (x, x′). If all are 1, jj′kk′ = 1111, then

uµµ
′νν′

1111 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

1 γν1 γν
′

1 ψ(x, x′)

iεµµ
′νν′

s(x) ψ†(x) γZEROγFIVE γµ γµ
′

γν γν
′

ψ(x)
s(x′) ψ†(x′) γZERO γFIVE γFIVE γFIVE γFIVE ψ(x′)

(49a)
The opposite case jj′kk′ = 2222 is

uµµ
′νν′

2222 (x, x′) ψ†(x, x′) γZERO γµ2 γµ
′

2 γν2 γν
′

2 ψ(x, x′)
sp(x) ψ†(x) γZEROγFIVE ψ(x)

iεµµ
′νν′

sp(x
′) ψ†(x′) γZERO γµ γµ

′
γν γν

′
ψ(x′)

(49b)

Elements with three 1 and one 2, for example jj′kk′ = 1112, are

uµµ
′νν′

1112 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

1 γν1 γν
′

2 ψ(x, x′)

iεµµ
′νκφκ(x) ψ†(x) γZEROγFIVE γµ γµ

′
γν ψ(x)

φν
′

p (x′) ψ†(x′) γZERO γFIVE γFIVE γFIVE γν
′

ψ(x′)
(49c)

Elements with one 1 and three 2, for example jj′kk′ = 1222, are

uµµ
′νν′

1222 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

2 γν2 γν
′

2 ψ(x, x′)
φµp (x) ψ†(x) γZEROγFIVE γµ ψ(x)

iεµ
′νν′κ′

φκ′(x) ψ†(x′) γZERO γFIVE γµ
′

γν γν
′

ψ(x′)
(49d)

The last group of elements of the four-index SO(2; 6) field has two 1 and two 2,
for example jj′kk′ = 1122,

uµµ
′νν′

1122 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

1 γν2 γν
′

2 ψ(x, x′)

σ̃µµ
′
(x) ψ†(x) γZEROγFIVE γµ γµ

′
ψ(x)

σνν
′
(x′) ψ†(x′) γZERO γFIVE γFIVE γν γν

′
ψ(x′)

(49e)
The branching rules may be summarized as follows.

uµµ
′νν′

1111 (x, x′) → iεµµ
′νν′

s(x)s(x′) , (50a)

uµµ
′νν′

2222 (x, x′) → iεµµ
′νν′

sp(x)sp(x
′) , (50b)

uµµ
′νν′

1112 (x, x′) → iεµµ
′νκφκ(x)φν

′

p (x′) . (50c)

uµµ
′νν′

1222 (x, x′) → φµp (x)iεµ
′νν′κ′

φκ′(x′). (50d)

uµµ
′νν′

1122 (x, x′) → σ̃µµ
′
(x)σνν

′
(x′) (50e)

The count of degrees of freedom is 70 = 1 · 1 + 1p · 1p + 4 · 4p + 4p · 4 + 6 · 6.

The total antisymmetric tensor εµµ
′νν′

will be omitted in the exchange rotation
rules if the same indexes are one both sides of an equation.
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2.6. Generalization to N fields

The exchange of any two out of N fields requires that the symmetry be
raised to SO(N ; 3N) and lowered back to SO(1; 3). This is relatively easy for
bispinors (see Section 2.2). The exchange of vectors between i and j subspaces
can be done in few ways depending on the choice of SO(N ; 3N) field. Fields
of the type w = ψ†NγZERO(

∏
kµ γ

µ
k )ψN will contain a product of two vectors

φµi (xi) and φµ
′

j (xj) after symmetry lowering, if the index k run one or three
times over i and one or three times over j.

Upon the exchange rotation the matrix γZERO in w will change sign because
of the permutation of γ0i with γ0j . Another sign flip will occur upon symmetry
lowering because of the permutation of one or three matrices γµi with one or

three matrices γµ
′

j . The overall calculation is a straightforward generalization
of Eqs. (39,40), which leads to the commutation of vectors as expected from the
spin–statistics theorem.

3. Discussion & Conclusions

In summary, we were able to calculate the exchange of SO(1; 3) spinor fields
and vector fields by making use of rotations through higher dimensions. While
vector fields are shown to be commuting as expected from the spin–statistics
theorem, spinor fields are turning out to be supersymmetric. These results are
consistent, because vector fields can be formed by products of spinors with the
same commutation rules.

The payment for supersymmetry comes with the commutation rules of ten-
sors with an even number of indexes. The commutation of adjoint fields shuffles
their components, and therefore, they neither commute nor anticommute. The
commutation of scalar fields changes them to pseudoscalar fields, and therefore,
they neither commute nor anticommute.

Exchange of SO(4) fields by raising symmetry to SO(8) gives exactly the
same result as that for SO(1; 3): the spinor fields are supersymmetric with
only left spinors anticommuting, see Eq. 11. However, an SO(8) scalar is de-
composed to produce two SO(4) scalars that commute upon exchange rotation
(conjugation in SO(4) preserves symmetry of a spinor, therefore SO(4) scalars
are formed by pairing commuting spinor with commuting spinor and anticom-
muting spinor with anticommuting spinor ψ†LψL, ψ†RψR). It also takes SO(4)
vectors to pseudovectors, and therefore SO(4) vector fields neither commute nor
anticommute.

The supersymmetry of spinors is not a consequence of Lorenz invariance,
because it holds for both SO(1; 3) and SO(4). It originates from the anti-
commutation of γ-matrices between subspaces. It is possible to construct an
exchange operator within the SO(1; 3) group by utilizing commuting spin oper-
ators. (The spin operator of one spinor field commutes with the spin operator
of the other spinor field.) The result is known as the Heisenberg Hamiltonian,
and it describes anticommuting fields.
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Previous works related to the connection between spin and statistics has
focused on the topological foundations of the spin–statistics theorem.[7] They
suffer from the appearance of unphysical states and parasitic statistics.[15] The
method of exchange rotation through SO(N ; 3N) is free of unphysical states;
SO(N ; 3N) bispinors branch precisely to direct products of SO(1; 3) bispinors.
At the same time, we abandon the concept of a non-relativistic proof of the
spin–statistics theorem.

For future research we leave the foundation of the method of embedding
of SO(1; 3) into SO(N ; 3N); this requires SO(N ; 3N) to be the original world
symmetry, spontaneously broken down to SO(1; 3). The idea is to drive the
spontaneous symmetry break by energy associated with the SO(N ; 3N) metric
field. The metric field becomes the order parameter and can drive the symmetry
lowering. The change in the metric should describe how the 4N -dimensional
light cone becomes a composition of N four-dimensional light cones. Then one
should integrate out fields that belong to N − 1 instances of SO(1; 3). The
resulting SO(1; 3) Lagrangian will have particle permutation laws, as computed
in the present work. It is also possible that the symmetry break of SO(N ; 3N)
will give birth to more complicated symmetry groups and therefore generate
internal symmetries of particles.

Present theory admits only five tensor fields: scalar, pseudoscalar, vector,
pseudovector and adjoint. Only these five fields can be obtained upon the
symmetry lowering of the SO(N ; 3N) single particle spinor field. Other tensors,
e.g. the gravity field, require four spinors to form and cannot be obtained by
symmetry lowering of the SO(N ; 3N) single particle field.

For future research we also leave the derivation of the supersymmetric La-
grangian. In a general way Eq. 11 means that the charge conjugation would
change statistics of a field and anticommute with exchange. Then, the symme-
try transformation between matter and antimatter would act as a scalar super-
charge allowed by the the Coleman-Mandula theorem on account of violation of
the spin–statistics theorem.[18, 19] For example, the deviation from the spin–
statistics theorem can be interpreted as stating that matter at high energy is
made from anticommuting left fields and antimatter from the commuting right
field. In this scenario the statistical theory of heat would give Fermi - Dirac dis-
tribution, thermodynamic potential and entropy for matter and Bose - Einstein
distribution, thermodynamic potential and entropy for antimatter. The lack
of an exclusion principle for antimatter would explain the matter–antimatter
asymmetry of the universe through the instability of antimatter.[3]
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