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Exchange of quantum fields by method of group embedding

Daniel L. Miller1
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The exchange between N quantum fields is investigated by raising symmetry from SO(1; 3) to
SO(N ; 3N), rotating 4N dimensional space, and lowering the symmetry back to SO(1; 3). We track
the exchange matrix for SO(1; 3) spinors (expected to be anticommuting) and products of even
number of spinors (expected to be tensors and, therefore, commuting). For spinors, the theory
turns out to be supersymmetric. Vector fields are commuting. The transformation takes a scalar
field to a pseudoscalar and, therefore, commutation rules for scalars cannot be computed using this
method.
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I. INTRODUCTION

The scientific interest in and debate over the founda-
tion of the spin–statistics theorem[1] have continued since
the theorems publication.[2] This theorem is required for
understanding the stability of matter,[3] periodic filling
of atomic orbitals, operation of lasers, and several other
phenomena. The theorem states that an ensemble of sev-
eral like particles will belong to the symmetrical class
if the particles have integer spin, and it will belong to
the antisymmetrical class if the particles have half-integer
spin; a mixture of all symmetry classes is never realized
in nature.[4]

The original proof of the theorem is based on the
CPT-invariance of energy, charge, and Greens function.
It makes use of the symmetry between particles and
antiparticles.[5] However, one can argue that it should
be possible to prove the spin–statistics theorem within
elementary quantum mechanics.[6] The idea is to replace
the particle exchange by rotation through additional de-
grees of freedom. The rotation of the wave function is a
smooth operation that should provide unambiguous in-
formation about its sign.[7–13]

The geometrical arguments in favor of the spin–
statistic theorem in most cases are formalizations of the
belt trick.[14] There are a few difficulties in realizing this
approach. The smooth exchange rotations of quantum
fields suffer from singularities that occur in the construc-
tion of space translations.[7] The exchange is typically
done through the SU(2N) group; unfortunately, this pro-
duces unphysical states.[15]

The present paper makes use of a four-step proce-
dure, which is outlined below, to connect the exchange
of SO(1; 3) fields and rotations in SO(N ; 3N) space. We
start with the example of N = 2 and then discuss a gen-
eralization to arbitrary N .
1. Embed the SO(1; 3) fields into one SO(2; 6) field.
2. Calculate the transformation of the SO(2; 6) field
upon rotation-exchanging embedded subspaces.
3. Branch the SO(2; 6) field back to the SO(1; 3) fields.
4. The transformation of the SO(2; 6) field becomes an
exchange of the SO(1; 3) fields.

The group theory structure of the above procedure is
very different from that used in the past. We do not use
any space translation groups and do not follow the belt
trick. Instead, we go straight to higher dimensions to
avoid difficulties with parasitic states and singularities.

Commutation rules can be computed between fields
of the same symmetry such as between spinor and spinor
fields or between vector and vector fields. For this reason,
not all SO(2; 6) fields are suitable for this analysis. We
will use SO(2; 6) bispinor, which branches to a product
of SO(1; 3) bispinors. Moreover, the SO(2; 6) adjoint
field branches to a product of vectors. Unfortunately, the
SO(2; 6) scalar field branches to a product of an SO(1; 3)
scalar and a pseudoscalar, and cannot be used for the
calculation of commutation rules.

This work uses the unified approach, whereby
all SO(2; 6) tensors are expressed through SO(2; 6)
bispinors. The rotations of all tensors are then obtained
from the transformation of bispinors. We keep all prod-
ucts of bispinor quantum fields normally-ordered to avoid
ambiguity upon symmetry raising and lowering. The nor-
mal ordering is not shown explicitly through the calcula-
tions, but it will be always assumed.

When this work began, the author anticipated obtain-
ing the spin–statistics theorem, that is, commutation of
integer spin fields and anticommutation of half-integer
fields. The calculations confirm the commutation of vec-
tor fields in accordance with the spin–statistics theorem.
The result is surprising for spinor fields: spinor fields are
found to be supersymmetric, with only left spinors anti-
commuting. This leads to the paradox mentioned in the
Landau course [16, §26]. The products of an even num-
ber of spinors form vectors and tensors. Supersymmetric
spinor fields would then lead to supersymmetric tensors.

This paradox is resolved by the following arguments.
Vector fields are made by pairing anticommuting fields

with anticommuting fields ψ†L~σψL and commuting fields

with commuting fields ψ†R~σψR, and therefore, they are
bosons (no paradox). Scalar fields are made by pair-

ing anticommuting fields with commuting ψ†LψR, and
therefore they are candidates for anticommuting spin-
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zero fields. The exchange of scalar fields changes their
symmetries to pseudoscalars, and therefore, they are nei-
ther commuting nor anticommuting.

The square of a scalar field is also a scalar field and
therefore it must be commuting. The scalar product of
two vector fields is a scalar field too and it must be com-
muting. The permutation of scalar field should therefore
preserve their symmetry and this contradicts previous
statement about the symmetry change.

This paradox is resolved by the following reasoning.
The method of embedding of SO(1; 3) into SO(N ; 3N)
requires SO(N ; 3N) to be the original world symmetry,
spontaneously broken down to SO(1; 3). Here N is the
total number of particles in the SO(1; 3) world and there-
fore the SO(N ; 3N) world has only one particle. In this
world there are no powers of ψ(x); it possible to form
scalar s(x) = ψ†(x)ψ(x) but there is no way to form
square of scalar field. Upon the symmetry lowering to
the SO(1; 3) world the product of two scalars is allowed
s(x)s(x′) but the square of a scalar is not allowed.

The exchange rotation between two subspaces of
SO(N ; 3N) is shown below in a few steps. We assume
that one subspace has axes xµ1 and the other subspace
has axes xµ2 , where µj = 0, 1, 2, 3. The first step is a

π/2 rotation R̂π/2 in the four planes xµ1x
µ
2 . This takes

xµ1 → xµ2 , xµ2 → −x
µ
1 , etc. In other words, for an SO(2; 6)

scalar one has

R̂π/2 : s(x1, x2)→ s(x2,−x1) (1)

Then we will need Î2 which inverts the xµ1 subspace such
that xµ1 → −x

µ
1 , etc:

Î2 : s(x2,−x1)→ s(x2, x1) . (2)

Finally, the exchange rotation is defined as

Ê = Î2R̂π/2 : s(x1, x2)→ s(x2, x1) , Ê2 = 1 (3)

The exchange of subspaces is not a smooth transforma-
tion, because it includes inversion in one of the subspaces.
However, all the elements are unambiguously defined,
and therefore, the exchange matrix is expected to be well
defined.

Section II defines bispinor fields for SO(1; 3) and
SO(2; 6) and presents the results of the exchange rota-
tion for bispinors. All γ-matrix-related algebra, rotation
matrices, and certain other calculations are included in
the appendices. The following sections (Sec. III and IV)
repeat the procedure of Sec. II for integer spin fields.
The metric tensor is not included because it requires four
bispinors for construction, resulting in overly heavy cal-
culations. The N -dimensional generalization of the the-
ory is discussed shortly in Sec. V, after which the work
is summarized in Sec. VI.

II. THE EXCHANGE ROTATION OF
BISPINORS

We start with half-integer spin fields because their em-
bedding in a higher-dimensional group is relatively easy.
For the SO(1; 3) and SO(2; 6) bispinors and their conju-
gates, we obtain

[1, 0] = ψL(x), ψ†R(x)

[0, 1] = ψR(x), ψ†L(x)

[0, 0, 1, 0] = ψL(x, x′), ψ†L(x, x′)

[0, 0, 0, 1] = ψR(x, x′), ψ†R(x, x′) , (4)

where L indicates left spinors and R indicates right
spinors. The highest Dynkin weights in square brack-
ets denote the D(2) and D(4) left and right spinors.[17]
. We will not use ψ̄ notations in this work.

The embedding (branching) rules are

ψL(x, x′)↔ ψL(x)⊗ ψR(x′)⊕ ψR(x)⊗ ψL(x′)

ψR(x, x′)↔ ψL(x)⊗ ψL(x′)⊕ ψR(x)⊗ ψR(x′) , (5)

and similar rules apply for conjugated fields. Bispinors
for both groups are defined as

ψ(x) = ψL(x)⊕ ψR(x) (6)

ψ(x, x′) = ψL(x, x′)⊕ ψR(x, x′) . (7)

The exchange rotation transforms the SO(2; 6) bispinor
ψ(x, x′) as

ψ(x, x′)→ Êψ(x′, x) . (8)

We postulate in this work that the matrix Ê is preserved
when the symmetry lowered from SO(2; 6) to SO(1; 3).
It allows the calculation of the exchange of SO(1; 3)
bispinors

ψ(x)ψ(x′)→ Êψ(x′)ψ(x) . (9)

The explicit calculation in A gives the action of the ex-
change rotation

ψLL(x, x′)
ψLR(x, x′)
ψRL(x, x′)
ψRR(x, x′)

→

−ψLL(x′, x)
ψRL(x′, x)
ψLR(x′, x)
ψRR(x′, x)

(10)

and after lowering the symmetry we obtain

ψL(x)ψL(x′)
ψL(x)ψR(x′)
ψR(x)ψL(x′)
ψR(x)ψR(x′)

→

−ψL(x′)ψL(x)
ψR(x′)ψL(x)
ψL(x′)ψR(x)
ψR(x′)ψR(x)

(11)

meaning that left spinors anticommute, and all other
commute. The same rules apply for conjugated fields
because the exchange matrix is real.
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III. CONSTRUCTION OF TENSORS FROM
SPINORS

For tensor fields, the generic embedding rules are
slightly more involved. It is convenient to calculate all
rotations by making use of γ-matrices; therefore, we will
express the tensors in terms of bispinors. We will distin-
guish tensors and pseudotensors by making use of the γ0

matrix in SO(1; 3) and γ01 in SO(2; 6). If the transforma-
tions ψ → γ0ψ or ψ → γ01ψ change the sign of a tensor
we will call it a pseudotensor.

It should be noted that Appendix A defines γ-matrices
for all SO(N ; 3N). We omit N in the γ-matrix notation,
assuming that the dimension of the γ-matrices matches
that of the spinor fields ψ in every equation. In particu-
lar, the γ-matrices in Eq. (12) are 4× 4 and in Eq. (16)
they are 16 × 16, acting on both subspaces of SO(2; 6).
Scalar SO(1; 3) fields are

[0, 0] = s(x) = ψ†(x)γZEROψ(x) ,

[0, 0]p = sp(x) = ψ†(x)γZEROγFIVEψ(x) , (12)

where the subscript p means pseudoscalar, and will be
used to indicate pseudovectors as well. The vector fields
are given by

[1, 1] = φµ(x) = ψ†(x)γZEROγµψ(x) , (13)

[1, 1]p = φµp (x) = ψ†(x)γZEROγFIVEγµψ(x) .

The adjoint representation is the last tensor field con-
structed from just two spinors

[2, 0]⊕ [0, 2] = σµν(x) = ψ†(x)γZEROγµγνψ(x) ,

σ̃µν(x) = ψ†(x)γZEROγFIVEγµγνψ(x) (14)

= −(i/2)εµνµ
′ν′
σµ′ν′(x) ,

where εµνµ
′ν′

is given by Eq. (B6). Because the field
σµν(x) is odd with respect to permutations of indexes
µ, ν, the field σ̃µν(x) is the same field with different in-
dexing of components.

Overall, we decompose the product of bispinors to a
sum of five tensor fields 4 · 4 = 1 + 1p + 4 + 4p + 6. The
metric tensor (e.g. gravitational field) [2, 2] = hµν(x) ap-
pears in the decomposition of products of four bispinors.

[2, 2] = [2, 0]⊗ [0, 2] (15)

h(x) = (σµµ
′

1 (x)− σ̃µµ
′

1 (x))(σνν
′

2 (x) + σ̃νν
′

2 (x))

However decomposition of the field into product of four
spinors is forbidden because the high symmetry state can
have not more than one particle.

The index µ for SO(1; 3) tensors ranges from 0 to 3;
we will use same index for SO(2; 6), together with an
extra index j in the range from 1 to 2; it will count the
SO(2; 6) subspaces. The scalar SO(2; 6) field is

[0, 0, 0, 0] = s(x, x′) = ψ†(x, x′)γZEROψ(x, x′), (16)

because γ01 commutes with γZERO for all N . The SO(2; 6)
pseudoscalar is therefore

[0, 0, 0, 0]p = sp(x, x
′) = ψ†(x, x′)γZEROγFIVEψ(x, x′).

(17)
The vector fields are

[1, 0, 0, 0] = φµj (x, x′) = ψ†(x, x′)γZEROγµj ψ(x, x′) (18)

[1, 0, 0, 0]p = φµpj(x, x
′) = ψ†(x, x′)γZEROγFIVEγµj ψ(x, x′)

The adjoint representations (antisymmetric tensor) are

[0, 1, 0, 0] = σµµ
′

jj′ (x, x′)ψ†(x, x′)γZEROγµj γ
µ′

j′ ψ(x, x′),

[0, 1, 0, 0]p = σµµ
′

pjj′(x, x
′) (19)

= ψ†(x, x′)γZEROγFIVEγµj γ
µ′

j′ ψ(x, x′),

where µj 6= µ′j′. The products of the three γ-matrices
give

[0, 0, 1, 1] = vµµ
′ν

jj′k (x, x′)

= ψ†(x, x′)γZEROγµj γ
µ′

j′ γ
ν
kψ(x, x′),

[0, 0, 1, 1]p = vµµ
′ν

pjj′k(x, x′) (20)

= ψ†(x, x′)γZEROγFIVEγµj γ
µ′

j′ γ
ν
kψ(x, x′).

where µj 6= µ′j′ 6= νk. The last field made from two
representations is

[0, 0, 2, 0]⊕ [0, 0, 0, 2] = uµµ
′νν′

jj′kk′ (x, x′)

= ψ†(x, x′)γZEROγµj γ
µ′

j′ γ
ν
kγ

ν′

k′ψ(x, x′), (21)

Overall, we decompose the product of the SO(2; 6)
bispinors to a sum of nine tensor fields 16 · 16 = 1 +
1p+8+8p+28+28p+56+56p+70, where the subscript
p indicates a pseudotensor.

IV. THE EXCHANGE ROTATION OF TENSORS

The transformation of the SO(2; 6) tensor fields is com-

puted by the action of the operator Ê on the function
ψ(x, x′). The operator Ê should be substituted into
Eqs. (17–21), followed by the rotation of the γ-matrices

by Ê.
Before studying the exchange rotations of the SO(2; 6)

tensors, let us summarize all counts of degrees of freedom
upon lowering the symmetry from SO(2; 6) to SO(1; 3).
The explicit calculation is shown in Appendix B:

1→ 1p · 1 , 1p → 1 · 1p , (22a)

8→ 4p · 1p + 1p · 4 , 8p → 4 · 1 + 1 · 4p , (22b)

28→ 6 · 1 + 4p · 4p + 1p · 6 , (22c)

28p → 6 · 1p + 4 · 4 + 1 · 6 , (22d)

56→ 4 · 1p + 6 · 4 + 4p · 6 + 1p · 4p ,
56p → 4p · 1 + 6 · 4p + 4 · 6 + 1 · 4 , (22e)

70→ 1 · 1 + 4 · 4p + 6 · 6 + 4p · 4 + 1p · 1p . (22f)
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The exchange between fields of the same symmetry is
possible by rotation of representations with 28 and 70
degrees of freedom.

Let us calculate the transformation of the 28-
component adjoint representation, which contains a
product of vectors. We will see symmetry change of some
representations upon exchange, and for comparison we
puit first the transformation of the 1-component scalar
field:

s(x, x′) → ψ(x′, x)ÊγZEROÊψ(x′, x). (23)

σµµ
′

12 (x, x′) → ψ(x′, x)ÊγZEROγµ1 γ
µ
2 Êψ(x′, x), (24)

Taking into account that in SO(2; 6)

γµ1 → Êγµ1 Ê = γµ2 , γµ2 → Êγµ2 Ê = γµ1

γFIVE → ÊγFIVEÊ = γFIVE

γZERO → ÊγZEROÊ = −γZERO (25)

we arrive at the exchange rotation matrix for SO(2; 6)
adjoint and scalar

s(x, x′)

σµµ
′

11 (x, x′)

σµµ
′

22 (x, x′)

σµµ
′

12 (x, x′)

→

−s(x′, x)

−σµµ
′

22 (x′, x)

−σµµ
′

11 (x′, x)

−σµµ
′

21 (x′, x)

, (26)

and after lowering the symmetry we obtain

sp(x)s(x′)
σ̃µµ′(x)s(x′)

sp(x)σµµ
′
(x′)

φµp (x)φµ
′

p (x′)

→

−sp(x′)s(x)

−sp(x′)σµµ
′
(x)

−σ̃µµ′(x′)s(x)

φµ
′

p (x′)φµp (x)

(27)

From this, we learn that pseudovector fields φµp (x) com-
mute as expected. A similar result is obtained from the
rotation of the pseudoadjoint field

σµµ
′

p12 (x, x′) → −σµµ
′

p21 (x′, x) , (28)

φµ(x)φµ
′
(x′) → φµ

′
(x′)φµ(x) (29)

which confirms the commutation of vectors φµ(x).
The representation with 70 degrees of freedom is trans-

formed as

uµµ
′νν′

1111 (x, x′)

uµµ
′νν′

1112 (x, x′)

uµµ
′νν′

1122 (x, x′)

uµµ
′νν′

1222 (x, x′)

uµµ
′νν′

2222 (x, x′)

→

−uµµ
′νν′

2222 (x′, x)

−uµµ
′νν′

2221 (x′, x)

−uµµ
′νν′

2211 (x′, x)

−uµµ
′νν′

2111 (x′, x)

−uµµ
′νν′

1111 (x′, x)

. (30)

The choice of indexes µνµ′ν′ is limited; they should be
different if they belong to the same subspace. Upon sym-
metry lowering, we obtain the following exchange rules

sp(x)sp(x
′)

φpκ(x)φν
′
(x′)

σµµ
′
(x)σ̃νν

′
(x′)

φµ(x)φpκ′(x′)
s(x)s(x′)

→

−s(x′)s(x)

φν
′
(x′)φpκ(x)

−σνν′
(x′)σ̃µµ

′
(x)

φpκ′(x′)φµ(x)
−sp(x′)sp(x)

, (31)

where εµµ
′νκ = 1 and εκ

′µ′νν′
= 1 define a relationship

between the indexes in Eq. (31) and Eq. (30).
We see from Eqs. (27,31) that a scalar field becomes a

pseudoscalar field upon the exchange, a product of scalars
becomes a product of pseudoscalars, and therefore they
neither commute nor anticommute. A similar problem
occurs for the exchange of tensors σµµ

′
; indexes of this

field get shuffled σµµ
′ → σ̃µµ

′
, which means that the

components of the tensor σµµ
′

neither commute nor an-
ticommute.

V. GENERALIZATION TO N FIELDS

The exchange of any two out of N fields requires
that the symmetry be raised to SO(N ; 3N) and lowered
back to SO(1; 3). This is relatively easy for bispinors
(see Appendix A). The exchange of vectors between
i and j subspaces can be done in few ways depending
on the choice of SO(N ; 3N) field. Fields of the type
w = ψ†NγZERO(

∏
kµ γ

µ
k )ψN will contain a product of two

vectors φµi (xi) and φµ
′

j (xj) after symmetry lowering, if
the index k run one or three times over i and one or
three times over j.

Upon the exchange rotation γZERO in w will change sign
because of the permutation of γ0i with γ0j . Another sign
flip will occur upon symmetry lowering because of the
permutation of one or three matrices γµi with one or three

matrices γµ
′

j . The overall calculation is a straightforward

generalization of Eqs. (28,29), which leads to the com-
mutation of vectors as expected from the spin–statistics
theorem.

VI. DISCUSSION AND CONCLUSIONS

In summary, we were able to calculate the exchange
of SO(1; 3) spinor fields and vector fields by making use
of rotations through higher dimensions. While vector
fields are shown to be commuting as expected from the
spin–statistics theorem, spinor fields are turning out to
be supersymmetric. These results are consistent, because
vector fields can be formed by products of spinors with
the same commutation rules.

The payment for supersymmetry comes with the com-
mutation rules of tensors with an even number of indexes.
The commutation of adjoint fields shuffles their compo-
nents, and therefore, they neither commute nor anticom-
mute. The commutation of scalar fields changes them to
pseudoscalar fields, and therefore, they neither commute
nor anticommute.

Exchange of SO(4) fields by raising symmetry to
SO(8) gives exactly the same result as that for SO(1; 3):
the spinor fields are supersymmetric with only left
spinors anticommuting. However, an SO(8) scalar is de-
composed to produce two SO(4) scalars that commute
upon exchange rotation. It also takes SO(4) vectors to
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pseudovectors, and therefore SO(4) vector fields are nei-
ther commuting nor anticommuting.

The supersymmetry of spinors is not a consequence
of Lorenz invariance, because it holds for both SO(1; 3)
and SO(4). It originates from the anticommutation of
γ-matrices between subspaces. It is possible to construct
an exchange operator within the SO(1; 3) group by uti-
lizing commuting spin operators. (The spin operator of
one spinor field commutes with the spin operator of the
other spinor field.) The result is known as the Heisenberg
Hamiltonian, and it describes anticommuting fields.

Previous works related to the connection between spin
and statistics has focused on the topological founda-
tions of the spin–statistics theorem.[7] These approaches
suffer from the appearance of unphysical states and
parasitic statistics.[15] The method of exchange rota-
tion through SO(N ; 3N) is free of unphysical states;
SO(N ; 3N) bispinors branch precisely to direct products
of SO(1; 3) bispinors. At the same time, we abandon the
concept of a non-relativistic proof of the spin–statistics
theorem.

For future research we leave the foundation of the
method of embedding of SO(1; 3) into SO(N ; 3N); this
requires SO(N ; 3N) to be the original world symmetry,
spontaneously broken down to SO(1; 3). The idea is to
drive the spontaneous symmetry break by energy associ-
ated with the SO(N ; 3N) metric field. The metric field
becomes the order parameter and can drive the symme-
try lowering. The change in the metric should describe
how the 4N -dimensional light cone becomes a composi-
tion of N four-dimensional light cones. Then one should
integrate out fields that belong to N − 1 instances of
SO(1; 3). The resulting SO(1; 3) Lagrangian will have
particle permutation laws, as computed in the present
work. It is also possible that the symmetry break of
SO(N ; 3N) will give birth to more complicated symme-
try groups and therefore generate internal symmetries of
particles.

Present theory admits only five tensor fields: scalar,
pseudoscalar, vector, pseudovector and adjoint. Only
these five fields can be obtained upon the symmetry low-
ering of the SO(N ; 3N) single particle spinor field. Other
tensors, e.g. the gravity field, require four spinors to
form and cannot be obtained by symmetry lowering of
the SO(N ; 3N) single particle field.

The deviation from the spin–statistics theorem can be
interpreted as stating that matter at high energy is made
from anticommuting left fields and antimatter from the
commuting right field. Then, the symmetry transfor-
mation between matter and antimatter would anticom-
mute with exchange. The lack of an exclusion princi-
ple for antimatter would explain the matter–antimatter
asymmetry of the universe through the instability of
antimatter.[3]

APPENDIX A: EXCHANGE OF 4-DIMENSIONAL
SUBSPACES INSIDE 4N-DIMENSIONS

The theory starts with ψN and ψ†N being field opera-
tors in SO(N ; 3N) space; they transform as 22N compo-
nent bispinors of the D2N Lie group

ψN = ψNL ⊕ ψNR ∼
(

[0, 0, . . . , 1, 0]
[0, 0, . . . , 0, 1]

)
, (A1)

and the same structure holds for ψ†N . Here the highest
Dynkin weights in square brackets denote the D(2N) left
(also marked by the subscript “L”) and right spinors (also
marked by the subscript “R”).[17]

The transformations of ψN upon space rotation are
given in terms of the set of 4N anticommuting γ-
matrices. The dimension of γ-matrices is 22N × 22N . In
all equations in this work we assume that the dimension
of the γ-matrices matches the dimension of the nearby
ψN field. This allows to omit N in the notation of γ-
matrices.

Here, 4N axes are counted as groups of four (sub-
spaces). The index j counts groups, and the index µ
counts axes within each group. Within each group, we
use the space metrics (1,−1,−1,−1). Thus, the explicit
way of writing the γ-matrices is

γ0j = 1⊗ . . .⊗ 1︸ ︷︷ ︸
2(j−1)

⊗σ1 ⊗ σ3 . . .⊗ σ3︸ ︷︷ ︸
2(N−j)+1

(A2a)

γ3j = i 1⊗ . . .⊗ 1︸ ︷︷ ︸
2(j−1)

⊗σ2 ⊗ σ3 . . .⊗ σ3︸ ︷︷ ︸
2(N−j)+1

(A2b)

γ2j = i 1⊗ . . .⊗ 1︸ ︷︷ ︸
2(j−1)+1

⊗σ1 ⊗ σ3 . . .⊗ σ3︸ ︷︷ ︸
2(N−j)

(A2c)

γ1j = −i 1⊗ . . .⊗ 1︸ ︷︷ ︸
2(j−1)+1

⊗σ2 ⊗ σ3 . . .⊗ σ3︸ ︷︷ ︸
2(N−j)

(A2d)

and a few auxiliary matrices are

γFIVE

j = −iγ0j γ1j γ2j γ3j (A2e)

γFIVE =
∏
j

γFIVE

j = σ3 ⊗ . . .⊗ σ3︸ ︷︷ ︸
2N

(A2f)

γZERO = γ0N · · · γ01(γFIVE)N−1 (A2g)

γZEROU−1 = U†γZERO .

where σ1, σ2, σ3 are the Pauli matrices. As in the case
of N = 1, the matrices γ0j , γ

1
j , γ

3
j are real, and the ma-

trices γ2j are imaginary. The space rotation matrix U is
introduced below. For N = 1, we will omit the subscript
indexes.

The space rotation in the plane (jµ, j′µ′) by angle θ is
equivalent to the linear transformation of the 4N coordi-
nates x→ Rx and 22N components of the wave function

ψN (x) → UψN (R−1x) , U = e
(θ/2)γµj γ

µ′

j′ (A3a)

ψ†N (x) → ψ†N (R−1x)U† . (A3b)
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The action of rotation operator R can be verified by

Uγµj xjµU
−1 = γµj (Rx)jµ . (A3c)

Finally, with the definition Eq. (A2g) one obtains the 4N
“Lorenz”-invariant scalar field

s(x1 . . . xN ) = ψ†N (x1 . . . xN )γZEROψN (x1 . . . xN )
(A3d)

In other words s(x1 . . . xN ) is invariant upon rotations in
4N -dimensional space.

There is a transformation that we call the i ↔ j sub-
space exchange

∀µ Eijγµi Eij = γµj , Eijγ
µ
j Eij = γµi (A4)

and our purpose is to calculate the field transformation
by this subspace exchange

ψN ′(. . . xi . . . xj . . .) = Eijψ
N (. . . xj . . . xi . . .) . (A5)

It can be derived as sequence of π/2 rotations and four-
inversion

Eij =
1

4
(1 + γ0i γ

0
j )(1− γ1i γ1j )(1− γ2i γ2j )(1− γ3i γ3j )γFIVE

i

(A6)
where

e±(π/4)γ
µ
i γ

µ
j =

1± γµi γ
µ
j√

2
, (A7)

and the sign of rotation in plane (i0, j0) is opposite to
that of the rotations in planes (i1, j1) . . . (i3, j3). This
can be verified by computing Eij for SO(4N).

The symbolic calculation was made by utilizing the cloud version of SAGE. The result in the form of Eq. (A5) is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



ψ...↑R...↑R...
ψ...↑R...↓L...
ψ...↑R...↑L...
ψ...↑R...↓R...
ψ...↓L...↑R...
ψ...↓L...↓L...
ψ...↓L...↑L...
ψ...↓L...↓R...
ψ...↑L...↑R...
ψ...↑L...↓L...
ψ...↑L...↑L...
ψ...↑L...↓R...
ψ...↓R...↑R...
ψ...↓R...↓L...
ψ...↓R...↑L...
ψ...↓R...↓R...

=

ψ...↑R...↑R...
ψ...↓L...↑R...
ψ...↑L...↑R...
ψ...↓R...↑R...
ψ...↑R...↓L...
−ψ...↓L...↓L...
−ψ...↑L...↓L...
ψ...↓R...↓L...
ψ...↑R...↑L...
−ψ...↓L...↑L...
−ψ...↑L...↑L...
ψ...↓R...↑L...
ψ...↑R...↓R...
ψ...↓L...↓R...
ψ...↑L...↓R...
ψ...↓R...↓R...

(A8)

where we show only relevant channels. The rest of the
matrix is diagonal. One can verify Eq. (A4) explicitly
or by making use of SAGE. As expected, the exchange
matrix Eij does not contain only −1. After symmetry
lowering of ψN to products of ψ, certain components will
commute while others will anticommute.

The next task is to index the components of the
SO(N ; 3N) fields ψNL , ψ

N
R according to the representa-

tions of the embedded group SO(1; 3) ⊕ · · · ⊕ SO(1; 3).
We will prove that the exchange operator E has nega-
tive eigenvalues for the exchange of the left fields only
(as shown above). The spinor ψN has 22N components;
we will mark them by N handedness indexes L or R and
by N spin indexes ↑ or ↓.

The common definition of the left and right spinors is
derived from their sign upon the 4N inversion; in spinor

representation the γFIVE is the operator of the 4N inver-
sion, as ∀jµ : γFIVEγµj γ

FIVE = −γµj . Then the compo-

nents of the spinor Eq.(A1) are selected by

ψNL =
1− γFIVE

j

2
ψN , ψNR =

1 + γFIVE
j

2
ψN , (A9)

and ψNL will change its sign upon 4N inversion, while ψNR
will preserve tits sign.

For every N , we can extract the index (L or R), which
belongs to the j-th subspace by making use of γFIVE

j –
the operator of four-inversion of the j-th subspace

ψ...L... =
1− γFIVE

j

2
ψN (A10a)

ψ...R... =
1 + γFIVE

j

2
ψN . (A10b)
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For example, the component of ψ branched to the prod-
uct of only the left fields is

ψL...L =

 N∏
j=1

1− γFIVE
j

2

ψN . (A10c)

The N spin indexes can be extracted according to the
sign of the generator of rotation in the (j1, j2) plane:

ψ...↑... =
1 + iγ1j γ

2
j

2
ψN (A10d)

ψ...↓... =
1− iγ1j γ2j

2
ψN . (A10e)

This labeling scheme allows us to write explicitly the ac-
tion of the exchange operator in Eq. (A6). Exactly the
same equation holds for ψ†N .

APPENDIX B: BRANCHING RULES FOR SO(2; 6)
TENSORS UPON SYMMETRY LOWERING TO

SO(1; 3)

We start the calculations with the decomposition of the
bispinors ψ†(x, x′) → ψ†(x) ⊗ ψ†(x′), which will match
the decomposition of the γ-matrices. In this work and
particularly in this section, we will assume that all prod-
ucts (explicit and implicit) of ψ operators are normally-
ordered. This allows us to avoid commutations between
ψ† and ψ.

The decomposition of the products of γµj matrices is

required to calculate the branching rules of the SO(2; 6)
tensors, and they are

γZERO

SO(2;6) =
(
γZERO

SO(1;3)γ
FIVE

SO(1;3)

)
⊗ γZERO

SO(1;3) (B1a)

γFIVE

SO(2;6) = γFIVE

SO(1;3) ⊗ γFIVE

SO(1;3) (B1b)

γµ1SO(2;6)
= γµSO(1;3) ⊗ γFIVE

SO(1;3) (B1c)

γµ2SO(2;6)
= 1SO(1;3) ⊗ γµSO(1;3) . (B1d)

For clarity, we will write the decomposition of the matri-
ces vertically. Branching rules for scalar can be derived
by making use of the following diagram

s(x, x′) ψ†(x, x′) γZERO ψ(x, x′)
sp(x) ψ†(x) γZEROγFIVE ψ(x)
s(x′) ψ†(x′) γZERO ψ(x′)

(B2)

Every element in the first line and right hand side of
the diagram is the direct product of the corresponding
elements from the second and third lines. The left hand
side of the diagram shows the branching rule

s(x, x′)→ sp(x)s(x′) , sp(x, x
′)→ s(x)sp(x

′) . (B3)

The branching rules for vector fields are computed simi-
larly

φµ1 (x, x′) ψ†(x, x′) γZERO γµ1 ψ(x, x′)
φµp (x) ψ†(x) γZEROγFIVE γµ ψ(x)
sp(x

′) ψ†(x′) γZERO γFIVE ψ(x′)
(B4)

and the final results for vectors and pseudovectors are

φµ1 (x, x′)→ φµp (x)sp(x
′), (B5a)

φµp1(x, x′)→ φµ(x)s(x′), (B5b)

φµ2 (x, x′)→ sp(x)φµ(x′), (B5c)

φµp2(x, x′)→ s(x)φµp (x′), (B5d)

where the branching of φµpj(x, x
′) has been calculated by

the same method.

We will calculate in detail some elements of 28- and 70-
dimensional fields. The calculations below require sets of
four different indexes satisfying one of following equations

γµγµ
′
γνγν

′
= iγFIVEεµµ

′νν′
, (B6a)

γµγµ
′
γν = iγFIVEεµµ

′νκγκ , (B6b)

γµγµ
′

= −(i/2)γFIVEεµµ
′λλ′

γλγλ′ . (B6c)

Here, εµµ
′λλ′

is the totally antisymmetric four-index ten-

sor. The branching of the tensor fields σµµ
′

jj′ (x, x′) and

σµµ
′

pjj′(x, x
′) depend on the combination of jj′ and must

be carried out in three ways for 11, 22, and 12. For
jj′ = 11 it is

σµµ
′

11 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

1 ψ(x, x′)

σ̃µµ
′
(x) ψ†(x) γZEROγFIVE γµ γµ

′
ψ(x)

s(x′) ψ†(x′) γZERO γFIVE γFIVE ψ(x′),
(B7a)

for jj′ = 22

σµµ
′

22 (x, x′) ψ†(x, x′) γZERO γµ2 γµ
′

2 ψ(x, x′)
sp(x) ψ†(x) γZEROγFIVE ψ(x)

σµµ
′
(x′) ψ†(x′) γZERO γµ γµ

′
ψ(x′)

(B7b)
The remaining terms have jj′ = 12, 21

σµµ
′

12 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

2 ψ(x, x′)
φµp (x) ψ†(x) γZEROγFIVE γµ ψ(x)

φµ
′

p (x′) ψ†(x′) γZERO γFIVE γµ
′

ψ(x′)
(B7c)
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The summary of the branching rules for all jj′ is

σµµ
′

11 (x, x′)→ σ̃µµ
′
(x)s(x′), σµµ

′

p11 (x, x′)→ σµµ
′
(x)sp(x

′), (B8a)

σµµ
′

22 (x, x′)→ sp(x)σµµ
′
(x′), σµµ

′

p22 (x, x′)→ s(x)σ̃µµ
′
(x′), (B8b)

σµµ
′

12 (x, x′)→ φµp (x)φµ
′

p (x′), σµµ
′

p12 (x, x′)→ φµ(x)φµ
′
(x′). (B8c)

The branching for jj′ = 21 is the same as jj′ = 12, but with the opposite sign. Counts of degrees of freedom are
28 = 6 · 1 + 4p · 4p + 1p · 6 and 28p = 6 · 1p + 4 · 4 + 1 · 6.

A similar classification of branching rules by number occurrences of 1 and 2 in the index jj′kk′ is valid for

uµµ
′νν′

jj′kk′ (x, x′). If all are 1, jj′kk′ = 1111, then

uµµ
′νν′

1111 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

1 γν1 γν
′

1 ψ(x, x′)

iεµµ
′νν′

s(x) ψ†(x) γZEROγFIVE γµ γµ
′

γν γν
′

ψ(x)
s(x′) ψ†(x′) γZERO γFIVE γFIVE γFIVE γFIVE ψ(x′)

(B9a)

The opposite case jj′kk′ = 2222 is

uµµ
′νν′

2222 (x, x′) ψ†(x, x′) γZERO γµ2 γµ
′

2 γν2 γν
′

2 ψ(x, x′)
sp(x) ψ†(x) γZEROγFIVE ψ(x)

iεµµ
′νν′

sp(x
′) ψ†(x′) γZERO γµ γµ

′
γν γν

′
ψ(x′)

(B9b)

Elements with three 1 and one 2, for example jj′kk′ = 1112, are

uµµ
′νν′

1112 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

1 γν1 γν
′

2 ψ(x, x′)

iεµµ
′νκφκ(x) ψ†(x) γZEROγFIVE γµ γµ

′
γν ψ(x)

φν
′

p (x′) ψ†(x′) γZERO γFIVE γFIVE γFIVE γν
′

ψ(x′)

(B9c)

Elements with one 1 and three 2, for example jj′kk′ = 1222, are

uµµ
′νν′

1222 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

2 γν2 γν
′

2 ψ(x, x′)
φµp (x) ψ†(x) γZEROγFIVE γµ ψ(x)

iεµ
′νν′κ′

φκ′(x) ψ†(x′) γZERO γFIVE γµ
′
γν γν

′
ψ(x′)

(B9d)

The last group of elements of the four-index SO(2; 6) field has two 1 and two 2, for example jj′kk′ = 1122,

uµµ
′νν′

1122 (x, x′) ψ†(x, x′) γZERO γµ1 γµ
′

1 γν2 γν
′

2 ψ(x, x′)

σ̃µµ
′
(x) ψ†(x) γZEROγFIVE γµ γµ

′
ψ(x)

σνν
′
(x′) ψ†(x′) γZERO γFIVE γFIVE γν γν

′
ψ(x′)

(B9e)

The branching rules may be summarized as follows.

uµµ
′νν′

1111 (x, x′) → iεµµ
′νν′

s(x)s(x′) , (B10a)

uµµ
′νν′

2222 (x, x′) → iεµµ
′νν′

sp(x)sp(x
′) , (B10b)

uµµ
′νν′

1112 (x, x′) → iεµµ
′νκφκ(x)φν

′

p (x′) . (B10c)

uµµ
′νν′

1222 (x, x′) → φµp (x)iεµ
′νν′κ′

φκ′(x′). (B10d)

uµµ
′νν′

1122 (x, x′) → σ̃µµ
′
(x)σνν

′
(x′) (B10e)

The count of degrees of freedom is 70 = 1 ·1 + 1p ·1p+ 4 ·
4p + 4p · 4 + 6 · 6. The total antisymmetric tensor εµµ

′νν′

will be omitted in the exchange rotation rules if the same
indexes are one both sides of an equation.
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