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The Supersymmetric QED with the scalar supercharge

Daniel L. Miller

The supersymmetric QED Lagrangian with electrons and positrons having opposite charge, parity
and statistics is investigated in details related to the CPT invariance and particle permutations.
In the present theory the charge conjugation anticommutes with permutation of particles. The
measurement of positron-positron scattering and the dipositronium ground state should prove or
rule out the proposed symmetry; however the experimental evidences are not yet available.

PACS numbers: 11.30.Er,11.30.Pb,12.20.-m,34.85.4+x

I. INTRODUCTION

The history of the supesymmetric action is exposed in
few excellent textbooks.[1-4] The real supersymmetric
particles are yet to be discovered; in all supersymmetric
Lagrangians the known material fields are replicated, the
replica fields should have opposite statistics and different
spin.

The fundamental obstacle in the development of the
supersymmetric theories come from the Pauly principle
making connection between group representation index
(spin) and statistics.[5, 6] The many body supersymmet-
ric action by definition combines material fields having
opposite statistics, and by virtue of the Pauli principle,
these fields cannot belong to the same representation.
The only exception is the non-interacting single-body
Lagrangian[4], where fields of the opposite statistics are
allowed to have the same spin.

The choice of the supercharge symmetry is also re-
stricted by the Coleman-Mandula theorem[2, 3], so the
overall number of allowed supersymmetries is limited.
The Coleman-Mandula theorem allows the scalar super-
charge, unfortunately it is prohibited by the Pauly prin-
ciple.

In the previous paper[7] the supersymmetric QED
Lagrangian with the scalar supercharge was derived
by the symmetry lowering of the single-body 4N-
dimensional action. In this way the spatial rotations
in 4N-dimensions became particle permutations in 4-
dimensions. As it was reported, the left spinor fields must
be anticommuting and the right fields must be commut-
ing in order to comply with exchange rotations in 4N-
dimensions.

The quantization of the above field can be done in var-
ious ways; we want to preserve the high energy limit[1]
where the left spinor becomes electron (in our case an-
tiparticle) and the right spinor becomes positron (in our
case particle). We will quantize the field rather straight-
forwardly by making use of particle blw bsp and antipar-
ticle ﬂp, fsp creation and annihilation operators. The
textbook expressions[8] for the energy and the charge will

be precisely reproduced

e = ZPO (blpbsp - fspfsTp) ) (1)
jO = Z (bipbsp + fspf;rp) . (2)
sp

The sign of the second term must be flipped to get the
positively defined energy (and by similar argument) the
correctly defined charge and the current. Therefore it
is enough to have only antiparticle fermionic field
out of two spinors in order to get the positively
defined energy and the correctly defined charge.

None of the basic assumptions of the Pauli principle is
relaxed in this theory: (i) - the Lorentz invariance, (ii)
- the positively defined energy, (iii) - the positively nor-
malized states, all are preserved. The Pauli principle has
fourth (iv) implicit assumption of same statistics for par-
ticles and antiparticles. All proofs of the Pauli principle
for spinors|1, 8] give the anticommutation of the antipar-
ticles, the anticommutation of the particles follows from
the (iv)-th assumption. In the present theory the the
(iv)-th assumption is relaxed; particles are bosonic coun-
terparts of the fermionic antiparticles; all connected by
supersymmetric rotations with the scalar supercharge.

The QED Xkinetic term is always the mix of the left
and right spinors by virtue of the Lorentz invariance.
In present theory it becomes also mix of the commut-
ing (bosonic) and anticommuting (fermionic) variables.
Therefore, the kinetic term in the Lagrangian acquires
the statistics flip operator, the scalar supercharge Q.

The major effort of this paper is to investigate the
actions of C', P, and T transformations on the particle
creation and annihilation operators, and on the plane
waves. We expect the solution to be C'PT invariant and
having positively defined energy and correctly defined
charge and current. This is indeed the case, therefore
the statistics flip operator @ allows to bypass the Pauli
principle.

The connection of the presented here theory to the re-
ality yet to be verified. The fermionic fields can be iden-
tified with electrons, while bosonic field with positrons.
The bosonic nature of positrons yet to be proved or ruled
out.



The great interest is therefore raised to the systems
having at least two interacting positrons. Unfortu-
nately there is no experimental data neither on positron-
positron scattering nor on the positronium molecule
(Psg) ground state.

The electron-positron annihilation does not prove or
disprove the present theory because it is described by the
single line diagram, and there is nothing to be permuted.
It is also known that electron and positron have opposite
parity, however this follows from the Lorentz invariance
(shown in the paper) and has nothing to do with the
statistics of the particle fields.

The annihilation channel of the Bhabha scattering has
two positron lines but they cannot be trivially permuted,
because 1st positron is annihilated and 2nd positron is
borne. The calculation in the Sec. B shows that this
process is not sensitive to the positron statistics.

Notations in present paper are slightly different from
previous one[7]| because there is no need to go beyond 4
dimensions. So

V=001, y=—ica®o0; (3a)
FVE = 5301, ity =1®03 (3b)

where o1, 09, 03 are Pauli matrices. The indexing of the
spinors is preserved in sense that
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where spin notations should be regarded only as index
the component of the field operator.

v (4)

II. THE FERMION-BOSON SWAP IN QED
LAGRANGIAN

The theory start with supersymmetric QED La-
grangian as it was derived in [7]. Here the mass term
is explicitly introduced in addition to the kinetic term
derived by the symmetry lowering technique

L=y (i0, + eAy/fe)p —my™°Qy . (5)
The fermion-boson swap operator @ acts as following

Q'=0Q, @=1, (6)

and for this reason () cannot be taken as Grassmannian
variable. All bunch of the commutation relations become

{Yr, YL} = {1/)271#2} =0,
[Wr, ¥R] = [Wh, vk =0,
[Wr, 1] = [, vl =0. (7a)

The quantization of these fields is done in the standard
way

Upon the action of the supercharge () commutation re-
lations become opposite to above

[QwsL (F, t)a wI/L('F/a t)Q] = 655’63( ) (Sa)
{QUsr(7, 1), W] (7, )Q) = 850 6°(F — ) , (8D)
and combining Egs. (7,8) one get

{QawsL(F )w 'L T t } - 2Q688 63( F,) (9&)
{vasR 7? )¢ 'R(r t)} - 2Q555/53(T -T ) (gb)

However it is not clear to me if the operator () can be
taken as stand alone.

The fermionic QED can be recovered by changing right
fields back to fermions

QUr = YR, VHQ =¥l . (10)

This transformation eliminates the supercharge @ from
the Lagrangian Eq. (5) and all operators become anti-
commuting fermionic fields. However, once we intro-
duced the supercharge () we open the way to quantize
the fields in terms of both fermionic and bosonic parti-
cles.

The interaction-free Lagrangian explicitly written in
terms of the left and right waves is

n 5P —mQ
o=t < —mQ p0+0p)¢ ()

the solutions are spin degenerate; we start with bosonic

particles in volume V, pg = /p? + m?2
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where the spin index and the summation over spins is
assumed but it is not explicitly written. The amplitudes
ur, and ug have two rows each, thus making 4-component
wave function ¢. Summations in Eq. (12) include the
summation over columns of uy, and ug and over rows of
uTL and u%. This field carries the positive energy and the
positive charge:

(14a)
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and entire calculation only use Q% = 1.
The fermionic antiparticles are given by the 4-inversion
of the above wavefunction

Lip(z) = 7"y (—a)
B etpr fTuLp
a \fZ m< fTuRp)

Lt (z) = % > iﬁ <—fpu2,,, fpczuk,,> , (15)
12

where summations include the sum over columns of uy,
and ug and ful and ul,. The action of th

r and over rows of u; and up. e action of the
4-inversion on the particle operators:

L =Qb,. Lf,=0Q
Iib, = Qf} . Libl = £,Q . (16)
These formulas preserve the commutation relations of the
left and the right spinors; they keep the annihilation op-
erators with the positive “frequency” and the creation
operators with the negative “frequency”.
For the fermionic antiparticle the energy is positive

and the charge is negative, as we expected from the very
beginning, see Eq. (1),

° / &A1yt po(1i))
= —Zpofpr ZpOfop >0

n = / Bripty = / (Lt (L)
=Y L= _fif<0.
i i

The energy of the system is positively defined, because it
is positive for both particles and antiparticles. The gen-
eral solution to the Lagrangian Eq. (11) is now written
as

(17a)

(17b)

W — P+ Ly (18)

which is automatically CPT invariant. In this way we
arrived at the supersymmetric quantum field satisfying
all conditions of the Pauli spin-statistics theorem.

The propagator for above waves has classical expres-
sion as shown in the Appendix Sec. A. It satisfies the
equation of motion derived from the Lagrangian Eq. (11)
without the operator @Q; the operator @ is transferred to
the definition of the propagator.

Let’s track now the commutation relations between
particle creation and annihilation operators. From
Egs. (7,8) we get

[bspv bi q] = 0ss0pq ,  {fop; fiq} = 0s570pq (19a)
{Q spy Vg’ qQ} - 555’6pq ) [Qfsp7fs qQ] - 655’5pq ( )

and this is of course consistent with Eq. (16).

III. CONSISTENCY CHECK FOR THE
OPPOSITE CHARGE, PARITY AND STATISTICS

It is known that particles and antiparticles in the reg-
ular QED have opposite charge and parity but the same
statistics. In the present work particles and antiparticles
have opposite statistics and the effect of the charge con-
jugation C’ space reflection P and the time reversion T’
is worth to investigate.

We will define the actions of the above transformations
on the field operators in a standard textbook way

Pup(t, ) = 700(t,—F) , PYI(t,7) = ¥T(t, —7)7°
Cop(x) =Pl (a)in? ,  Cyl(x) = i ()
To(t,7) = 1 (—t, Py Y, TYT(E,7) = vy (—t,7)
Lip(z) = CPT¢( ) = i’y Y (—x) = Y PY(—=)

The only charge conjugation Cis acting to convert parti-
cles to antiparticles (this can be seen by substitution the
plane wave expansions into above formulas)

CA(bs;o = f—sp 3 CA’f\sp = b—sp 5 (21)
The space reflection change the statistics
Pbsp = Qbsp 5 If).fsp = Qfsp . (22)

In this way both the 4-inversion I, get all the properties
Eq. (??). The general statement about Eq. (22) would
be that the charge conjugation takes the anticom-
muting world to the commuting antiworld.

The permutation of two particles can be formally writ-
ten as the action of the exchange operator

—fofa=Efyfp, bpbg = Ebgb, (23)
then the action of the Charge conjugation is

CEfofp = —bpbg = —EC [, fp (24)

CEbgb, = —fpfq = —ECbgb, (25)

and it anticommutes with the particle exchange, as was
stated in the abstract.

IV. THE SUMMARY

In present theory particles and antiparticles have op-
posite charge, statistics and parity. The space reflection
of the charge conjugated wave has opposite sign compare
to the space reflection of the original wave[8]:

P(Cy)y = —(Co) (26)

meaning the opposite parity of particles and antiparti-
cles. This effect is seen experimentally as the orthogonal
polarization of the annihilation photons [8]§88. This ef-
fect is independent of the particle statistics, and cannot
rule out the present theory.



The single @ operator cannot stay in the scattering
amplitude because it would imply odd number of parti-
cle and antiparticle operators; at the end some operators
will not be able to find the pair. The even number of @
operators will give unity after the time ordering. There-
fore the operator @ drops from diagrams computed with
Lagrangian Eq. (5).

For the above reason we must preserve all QED di-
agram rules[8] with one exception: the permutation of
particles preserve the sign (the permutation of antipar-
ticles change the sign) of a diagram. The prediction for
differential cross section of electrons and positrons be-
comes

7P < m?
152>>m2

, (27a)
. (27D)

dOp-o— < AOp—ot+ < dTpte+
dU€+e+ < dUe—e+ < dO’e—e— s

Let me propose the experiment[9] with positron scat-
tering on cold positron plasma[10], positronium[11] or
trapped antihydrogen[12-14]. The angle dependence of
the scattering cross section should satisfy Eq. (27)

The ground state spin of the positronium
molecules[11], also known as dipositronium Ps2 would be
S = 1 for commuting positrons. The non-zero Zeeman
effect is predicted for Ps2 in subsequent publication[15],
and it allows to identify the ground state spin.

Another prediction is the lack of the molecular anti-
hydrogen, because for there is no exchange interaction
for bosonic positrons. The hydrogen molecule binding
energy ~4.5eV is comparable with the binding energy of
the hydrogen atom ~13.6eV, so the molecular antihydro-
gen must be observed together with atomic antihydrogen.
Surprisingly no world was said about molecular antihy-
drogen in few latest experiment reviews.[16, 17]

Let me mention at the end, that the world made from
bosonic charges becomes unstable.[18] This explains, why
antiworld cannot exist for long time, and never observed.

APPENDIX A: THE GREEN FUNCTION FOR
MIXED FERMION-BOSON FIELD

The generic expression for the 4-current j* = Q)
has left j;, = ¢2707“1/)L and right jp = w;f%fyovuz/}R com-
ponents made from fermionic and bosonic fields. However
some diagrams might need to mix left and right fields,
therefore the Green function should be defined with op-
erator Q.

The Green function for positive time ¢ > 0 describes
the motion of particles, but this is only seen with the
plane wave expansion Eqs. (12,13)

Gla) = (<|wL<x>w2<o> b (un@eLO)] )

— (| ¥r(@)vR0) ] <\QwR<zmz<o>|>

_ <—<|QwL<x> HOIEROTAOD >
~(Ur@PRO) ) = vn@wLOQ])

t>0 (A1)

The Green function for negative time describe the motion
of antiparticles, see Egs. (15,18),

(19O @)
&) <<JR<> bn(x) )

t<O0

(14100 ()] )
(|VL(0)Qur() )
(A2)

The Green function satisfies the equation of motion,
which follows from Egs. (5,7),

(104"

where the operator (Q is moved from the Hamiltonian into
the Green function.

—m)G(x) =0(xz—2'), (A3)

APPENDIX B: RELATIVE SIGNS OF ELECTRON
AND POSITRON SCATTERING DIAGRAMS

For the first glance the overall theory seems to be stan-
dard QED with particle annyhilation operator Qb,. Let’s
check if the commutation rules for particles can be re-
vealed in the real physical process.

The generic expression for the 4-current expanded over
plane waves is

(@) =Ty =i+ Gl 4l + 5k (Bla)
where one has the positron current
' eipw—iql
k= Z N ————="blbgul /Oy u, (B1b)
the electron current
e —ipr+iqxr
B iz
J =Y —————fpflul Oy u Blc
e Z@ 2 /roq p q p q ( )
the pair creation current
] esz-‘rzq;v
g = Z NG bIQfiuly v u_g (B1d)
and the pair annihilation current
e—ipw—iqw o
prbq“L'Y YHu—q (Ble)

gl =
2. /Podo
77 Poqo

besides u_, = ¥"VFu,, similarly to the transforma-
tion rules of the plane waves. For two antiparticles
ul A0y u_y = ufy Oy,

For the interactlon of two particles we have following
terms [8] §73 in the scattering matrix

262
2!
=S5 48 S, g

e~ et

S = d*wd"s' Dy (¢ — 2')Tj" (2)j" (z')

(B2)



where iD,,, (x — 2’) is the photon propagator, and T'
stands for the time ordering. We postpone taking matrix
elements of j#(z)j¥(2') and transition to the scattering
amplitude. For the Moller scattering

Serer +5ime- = 2' Z pr Vg ”YOVV“q’>
Dyv, p—q=q' v ( T

x Dwvpoa=aw (o pty ptopt g fT,fT)
4/pogophay N PTTTR AP

the particle etet channel is even upon particle permu-
tations and the antiparticle e”e™ channel is odd upon
particle permutations, as well known for electrons. For
the elastic part of the Bhabha scattering one has

Ssl et = 2] Z pry ’Y uq ’rYO’Yqu')

DuVP*q:p*q( i
et L e bf,bff,+fb/ffb,)
Ay/poqopay, L rTe S TEEAaTy

and for the annihilation channel one gets

;52
€
et = “or Z( LWO’Y U—g)( !

w0y ug)
Do prazp'+a’ ( Forbg beT"‘fpbqu/fT/)
pJq

4+/P0qopo 4o

The scattering matrices Sfl Se, o+, and + lead to
well known scattering amphtudes for the Moller scatter-
ing of electrons and the Bhabha electron-positron scat-
tering.

The positron-positron channel of the Moller scattering
will have other sign of the interference term because the
scattering matrix SSL€+ is made from all boson operators.
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