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Branching rules for superalgebras with so(/N,3N) even part and scalar odd part

Daniel L. Miller
Intel IDCY, M.T.M. Industrial, POB 1659, Haifa, Israel

Odd N special orthogonal Lie algebra so(N; 3N ) together with scalar supercharges @, Q" give rise
to a superalgebra where supermultiplets are made from conjugated representations of so(N;3N). We
report branching rules for this superalgebra and consistency with the theory of exchange rotations.

PACS numbers: 11.30.Pb

The purpose of this work is to analyze superalgebras|1]
obtained by making use of an orthogonal Lie algebra and
a scalar supercharge. For the first glance this will lead to
same symmetry (spin) of both commuting and anticom-
muting fields, as in the theory of disordered metals.[2]
In this example commuting fields are replica of anticom-
muting fields leading to few subalgebras of gl(n|n).[3] The
exception however is the case when supercharge also acts
as the charge conjugation. In this case anticommuting
and commuting fields have same symmetry (spin) but
will represent physically different particles.

The spatial rotations for spinor representations of
s0(N;3N) algebra with odd N are defined as

SO =T, 60° =Ty, ()
and the superrotations are generated by the Grassman-
nian supercharge () satisfying QQ° = —Q°Q

O =QW, Y= Q,

S (2)
Here % is so(IN;3N) bispinor ¢y, @ ¢r and ¢¢ = Cy*
is the charge conjugated bispinor o5 @ ;. Fields
Y1, g denote left and right spinors (dotted and undot-
ted spinors in other notations). Explicitly the charge con-
jugation C' depends on the choice of the representation
for T in Eq. (1). Besides Q¢ = CQC, and superscript ¢
means transposed vector.

The key point of the present theory is that %} has

same space rotation rules as ¢y, and therefore can form
supermultiplet with scalar supercharge

melgﬂ:(} = {wLaql/L}:07 [T/JR,%%]:O,
[, YRl =0, [¥5.¢5]1=0. (3)
Fields 9r, %% in this multiplet are commuting compo-
nents and fields v, 1] are anticommuting components.
The superalgebra is constructed by making use of sec-

ond variation in Egs. (1,2). The grading is defined

LO = EHd(T) L_l = End(QC) L1 = End(Q)
sso(N;3N)=L_1® Lo® Ly . (4)
Supercharges @ and Q¢ must anticommute to an ideal

of Ly which is zero for the case of Ly being the special
orthogonal algebra.[4]

It is possible to introduce the maximal subalgebra
$0(N;3N) ® so(M;3M) of the algebra so(N + M;3N +
3M), and branching rules for subalgebra embedding

so(N + M;3N + 3M) — so(N;3N) ® so(M;3M) (5)

are as follows for scalar s, vector v, and adjoint ad rep-
resentations

N+M _ (N o M N+M _ N o\ M

ad" ™ = ad"V @ ad™ @ N @M | (6)
and for spinor fields

NEM — N @M @ N @y
N+M — N o yM oyl o oM . (7)

It is therefore possible to define 1 as anticommuting
field and ¥g as commuting field for any N and these
commutation properties will be preserved upon embed-
ding of maximal subalgebra given by Eq. (5).

The supermultiplet is defined only for odd N. Indeed,
the supercharge @ is the scalar and therefore branching
rules for it, see Eq. (6), become

QVtM — QN @ QM =0 odd N,M
QNTM =QN odd NN+ M (8)

The scalar supercharge must be zero for even N, and
therefore it is not possible to define grading by making
use of a scalar supercharge for so(N;3N) with even N.
The summary of above embedding rules for maximal
subalgebras and maximal subsuperalgebras is

so(N + M;3N + 3M) = sso(N;3N) ® sso(M;3M)

$so(N 4+ M;3N' +3M") = sso(N;3N) @ so(M'; 3M")

so(N"+ M';3N" +3M") = so(N'; 3N") @ so(M'; 3M")
(9)

where N, M are odd and N’, M’ are even. Branching
rules for generators of space rotations 7™V follow those
of adjoint representation Eq. (6). Therefore subalgebras
in Eq. (9) are not just direct product of algebras but a
more complicated operation.



The superalgebra sso(N;3N) defined by Eq. (3) have
superscalar s and supervector v;f similarly to the scalar
and the vector of so(N;3N). Both s and v} are invari-
ant upon the superrotation and transform as scalas and
vector upon space rotations

(S/S:O, S:QSth_QZ)th (10)
S =0, v = oMy — oyye (11)

The notation for y-matrices is taken from Ref. [5], besides
7§-‘ ¢ — ij = 0. Branching rules for these representa-
tions upon embeddings Eq. (9) are the same as for regular
algebras Eq. (6).

Let’s consider the case when the symmetry is lowered
down to SO(1;3) and maximal subalgebra is written as

$s0(N;3N) = ss0(1;3) ® ... ® sso(1; 3)
Ntimes,Nis odd

so(N';3N") = s50(1;3) ® ... ® ss0(1;3) . (12)

N'times,N'’is even

Our next step is to apply the exchange rotation to
$80(N;3N) or so(N';3N").

The exchange rotation in space with group symmetry
SO(N;3N) smoothly exchanges coordinates x and 2
of two subspaces, where 7,5 = 1,..., N enumerates sub-
spaces and u = 0,...,3 enumerates coordinates within a
subspce. The exchange rotates bispinor ¢~ = & @ ¥

It turns out that components of ¥"V can be indexed ac-
cording to components of ¥ obtained by embedding
Eq. (12). For example

Vi~ @ e (14)
—_
Ntimes

then the result of exchange rotations|[5] is

EgpNp (@) ==Y, o (2)
BN, g (@) =9¢Ng o ()
E2]1/J.1YR...L...($) = 1/’.]YL,..R...(CU/)
Eij%/f.JYR...R...(I) = 1/’.]YR...R...(I') (15)

Therefore exchange rotations in SO(N;3N) behave as if
the bispinor ¥V is made by direct product of sso(1;3) su-
permultiplets (1) = ¢(L1) @ wg) with commutation rules
given by Eq. (3).

The beauty of Eq. (15) is in connection between rota-
tions in 4N dimensions and fields commutation rules in
4 dimensions. The symmetry lowering from 4N dimen-
sions to 4 dimensions transforms space rotations to the
exchange of fields and obtained commutation rules must
be supersymmetric. In this way the supersymmetry is

naturally derived from space rotation in higher dimen-
sions.

Supermultiplets in the superalgebra sso(1;3) are made
from fields having same spin and therefore violate the
Pauli spin—statistics theorem. Let me mention that in
this case one of foundations of the spin—statistics theorem
is not fullfilled and therefore the theorem is not violated.

The Pauli spinstatistics theorem was derived assuming
that “actual ensemble of several like particles” is never
realized in Nature as “a mixture of” commuting and anti-
commuting fields.[6] This is because the thermodynamic
potential can only be defined if an ensemble of several
like particles has well defined statistics.

Mathematically the prove of the Pauli spin—statistics
theorem is based on the assumption that the charge con-
jugation always connects fields with the same statistics
(both commuting or both anticommuting). This foun-
dation principle is stronger than just requirements of no
mixture of commuting and anticommuting fields in an en-
semble of several like particles. The charge conjugation
can connect two ensembles of different particles. Then
the thermodynamic potential can be defined for each en-
semble separately and therefore these two ensembles can
have different statistics.

The present theory discuss possibility of supersym-
metry between different fields (still connected by the
charge conjugation), and therefore violates foundations
of the spin—statistics theorem. The spin—statistics theo-
rem is not applicable to the case when the supersymme-
try comes together with the charge conjugation.

In summary we introduced the special orthogonal su-
peralgebra constructed from odd N special orthogonal
algebra so(N;3N) and the scalar supercharge. We de-
rived branching rules for maximal super subalgebra. We
discussed connection between exchange rotations in 4N
dimensions and supersymmetry in 4 dimensions.
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